
A Goal-Driven Framework in Support of
Knowledge Management

Guoping Rong†, Xinbei Liu‡, Shenghui Gu§, Dong Shao†
Software Institute, Nanjing University, Nanjing, Jiangsu, P.R.China

†{ronggp, dongshao}@nju.edu.cn
‡141250078@smail.nju.edu.cn §SamuelGarciaSTK@gmail.com

Abstract—Knowledge management nowadays usually focuses
on the choice among some models or methodologies as a whole,
but not on some specific, quantitative contributions of particular
goals of the organization. Such a simplification misses some
important chances for knowledge integration and transformation.
What’s worse, this simplification depresses the motivation of
team members to accumulate and use the knowledge. In this
paper, we propose a knowledge management framework which
features in its goal-driven philosophy to manage project devel-
opment, organize the knowledge and effectively integrate the
knowledge management process into the development process.
This method helps software project teams comprehensively and
systematically identify and track knowledge management goals as
far as possible. With a common framework, an organization is
able to exchange knowledge and expertise within itself, which
helps to glue the company together; while at the same time
ensures that knowledge is shared over time so that the company
benefits from past experience. Team members come to a common
understanding on how to accumulate knowledge by establishing
goals and corresponding solutions to meet the goals, and this
consensus and clear vision on knowledge management motivates
members to create knowledge and reduce the “gulf” between
knowledge creation and application. It was successfully applied
in several projects of different companies. The framework helps
them establish an initial knowledge and experience repository.
Software engineers are able to have more information available
than they could understand and apply.
Keywords—Goal Driven; Knowledge Management; Knowledge

Management Framework

I. INTRODUCTION

Software engineering is knowledge-intensive work. There-

fore, development of software requires knowledge and expe-

rience in many areas. Software engineering involves several

knowledge types–technical, managerial, domain, corporate,

product, and project knowledge [1]. These knowledge and

experience help people to decrease software projects’ develop-

ment time and costs, avoid mistakes, reduce rework, and repeat

successful processes, as well as increase productivity and the

likelihood of further success [1]. They can also help software

practitioners make sound decisions under uncertainty and to

find better compromises [2]. In one case, effectively exchange

of knowledge is the glue that holds a company together [3].

Unfortunately, the reality is that most development teams do

not benefit from existing experience as expected and they

constantly repeat mistakes even though some individuals in

the organization know how to avoid them. Lacking effective

Knowledge Management (KM) is one reason of the reality.

Therefore, management of knowledge and experience is a

challenge for most software organizations. As pointed by

Ioana Rus et al., i.e. the challenges and obstacles of KM

came from three major sources, the technological issues, the

organizational issues and the individual issues [1], [4], [5],

respectively.

From the technological perspective, most KM information

systems are what so-called closed systems [6]. With closed

systems, knowledge and experience are more like documented

materials which store answers to questions that might arise

during work. Therefore, consumers of the knowledge need to

discover the answers when facing specific problems. However,

these systems usually contain thousands of pages of unstruc-

tured information, as a result, the discovery procedure could be

time-consuming and software engineers may lose faith in and

patience under tight project schedule. Besides, updating and

maintaining existing knowledge and experience will also be a

big issue, not to mention obtaining outdated information after

long time searching for intended users of the KM systems.

From the organizational perspective, the culture of most

industrial organizations usually only encourage finishing cur-

rent project on time, within budget and with quality. In

firms, many resources and much time and effort are required

before benefits became visible, as a consequence, current

project teams tend to spend little effort and resource to

help future projects. For example, organizations with hero

culture may encourage individualism rather than cooperative

work. Therefore, employee might not be willing to share

knowledge and experience at the organizational level. What’s

worse, few organizations established specific processes for KM

and neither maintenance of knowledge and experience nor

application of them could be effectively conducted. In this

sense, a separated KM mechanism or process might be taken

as additional burden on most project teams.

From the individual perspective, development team mem-

bers might also lack of motivation to accumulate valuable

knowledge and experience in current projects. Project man-

agers would rather focus on completing their current project

on time than help the next project manager succeed. Therefore,

they often consider accumulating knowledge and experience a

burden, not mention that “when and how to use the knowledge

and experience in future projects is usually uncertain” [1]. For

other engineers, they often “do not have time to input or search

for knowledge, do not want to give away their knowledge,

2017 24th Asia-Pacific Software Engineering Conference

978-1-5386-3681-7/17 $31.00 © 2017 IEEE

DOI 10.1109/APSEC.2017.35

289

2017 24th Asia-Pacific Software Engineering Conference

978-1-5386-3681-7/17 $31.00 © 2017 IEEE

DOI 10.1109/APSEC.2017.35

289

2017 24th Asia-Pacific Software Engineering Conference

978-1-5386-3681-7/17 $31.00 © 2017 IEEE

DOI 10.1109/APSEC.2017.35

289

Authorized licensed use limited to: Nanjing University. Downloaded on December 11,2020 at 04:25:35 UTC from IEEE Xplore. Restrictions apply.

and do not want to reuse someone else’s knowledge” [1]. Be-

sides, the fast pace of technology evolution often discourages

software engineers from analyzing the knowledge they gained

during the project, believing that sharing the knowledge in the

future will not be useful.

In this paper, we proposed a Goal-Driven Development KM

(GDD-KM) framework which featured in its inherent Goal-

Driven philosophy and cyclic approach. Goal-Driven philoso-

phy helps to organically structure knowledge and experience

since only those knowledge and experience which help to

satisfy identified goals in previous projects were captured

and organized in the knowledge repository. Meanwhile, the

cyclic nature of the GDD-KM helps to enrich, refine and

outdate knowledge and experience as necessary. In this sense,

knowledge and experience evolve with each cycle. We applied

GDD-KM in several projects and helped these teams to

accumulate and transfer knowledge and experience effectively

and efficiently.

The rest of the paper is structured as follows. Section II

provides a brief introduction to the background of this paper,

i.e. the related work in KM, GDD project management method

and the GDD-KM cycle. Section III describes the application

of GDD-KM in a real project. Some empirical evidences were

collected and analyzed to verify the effectiveness of GDD-

KM. Section IV compares GDD-KM with traditional KM

methods and further discusses several limitations on GDD-

KM at this stage. The paper is concluded in Section V with

the suggestions on future continuous research.

II. BACKGROUND

A. Related Work in Knowledge Management

Research and practice in knowledge and experience man-

agement in software development occurred at different layers

and in organizations with different size. Schneider et al.

[2] compiled five-year-long experience in building, revising,

and improving experience repositories in DaimlerChrysler Re-

search Center. They found that for most knowledge reposito-

ries, the contents of the database were unordered and the forms

they provided were so sophisticated that they could hardly

provide any guidance to its intended users. As Schneider et

al. pointed, experiences should not be stored on a dusty shelf,

but engineered into best practices and processes that guide user

work. Another famous KM implementation came from NASA

Software Engineering Laboratory as the first implementation

of “Experience Factory” [7]. Liebowitz described this KM

implementation based on working experience on NASA and

concludes that KM should start small and see what works in a

specific environment and that knowledge should be collected

during projects, not after their completion [8].

Compared with Experience Factory that requires numerous

effort and resources, PMA (PostMortem Analyze) offers a

quick and simple way to initiate knowledge management in

small- or medium- size software projects. Andreas Birk et al.

[9] described an effective solution to address knowledge and

experience sharing issue by conducting postmortem with an

open atmosphere. They received a lot of positive feedback

from PMA participants in different companies. By using

systematic postmortem analysis for capturing and reusing

experience and improvement suggestions, the teams in one

organization increased experience understanding and sharing.

However, as Birk et al. [9] said, PMA has been mainly

advocated for situations such as completion of large projects,

learning from success, or recovering from failure. With pop-

ularity of Agile process and practices [10], continuous and

quick knowledge and experience evolution and sharing will

be more and more important [11], [12].

There also exist numerous successful KM practices. Ramesh

studied best practices in 30 organizations and concluded the

importance of link knowledge fragment to guarantee trace-

ability (creating and maintaining relationships between objects

and people in software development) [13]. This traceability

will facilitate successful knowledge transfer and reuse. Komi-

Sirviö et al. emphasized the need for addressing local needs,

problems, and specific context for KM initiative implemen-

tation [14]. Therefore, to make knowledge and experience

useful, project-based KM approach will facilitate knowledge

collection and delivery better than large scale KM approach

at the organizational level.

Through the above-mentioned practice and research, several

characteristics of effective KM were identified as the follow-

ing:

• Standard, flexible structure of knowledge and experience

with a clear specification

• To collect knowledge during project development, not

after their completion

• To focus on project-based KM approach and to link

knowledge fragment to guarantee traceability

• Clear purpose of collecting, managing and using the

knowledge

Since most KM approaches might lack these characteristics

more or less, we designed a Goal-Driven KM as a build-in

mechanism of a project management method, i.e. the Goal-

Driven Development (GDD) method.

B. GDD Introduction

Goal-Driven Development (GDD) is a project management

method which was designed to improve the traditional project

management methods by focusing on balancing and meeting

multiple project goals. Practice and evaluation of GDD were

described in [15]. A typical cycle of GDD is composed of three

primary phases: the launch phase, the development phase and

the postmortem phase. Fig. 1 shows the sequence of the GDD

method and typical tasks within each phases as well.

1) Practices Supporting KM: Knowledge and experience
management was a build-in mechanism of GDD method.

Several practices in GDD, especially the practices in launch

phase and postmortem phase support KM well.

a) Launch Phase: A launch phase consists of five meet-
ings as depicted in Fig. 1, among which the goals elicitation

meeting and the goals implementation solution meeting help

to establish the initial version of knowledge and experience

repository for project teams.

290290290

Authorized licensed use limited to: Nanjing University. Downloaded on December 11,2020 at 04:25:35 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. Process framework of GDD method

Goals Elicitation: In this meeting, the project team

members work together to identify two types of goals, i.e.

internal and external goals. To elicit goals comprehensively

and systematically, a tree-styled diagram (mind-mapping) can

be used to facilitate goal identification. The high level goals

need to be broken down until the related implementation

solutions are applicable and operational to the development

team. Typical goals can be grouped into four categories at the

top level: product, project, process and team. Fig. 2 depicts

an example of goal break-down structure. In practice, many

projects are able to group their goals into these four categories.

This tree-styled diagram forms the main skeleton of knowl-

edge and experience repository in GDD-KM which is easy to

use in future projects and share among different projects. For

example, next projects use this diagram as a goal template to

accelerate goal elicitation. Even with different project context,

goals are similar in most situations, normally the higher level

the more chances to reuse the goal template.

Goals Implementation Solution: To promote full par-

ticipation, the goals on leaves should be allocated among

all the team members according to preference and balanced

workload. Therefore, each goal should be assigned a fixed

owner, who is responsible to develop the implementation

solution and to track the status during development. Note

that this does not necessary imply that the owner should

devise implementation solution all by her/himself. After that,

the whole team should reach consensus on implementation

solutions of all the goals on the fine-grained level. Description

of the solutions to implement projects goals are the most

valuable knowledge and experience for next projects. When

all these information has been organized according to the

structure of project goals, retrieval of information will be

easy. Besides, this goal-solutions structure will also provide

software engineers with certain context of application when

they create knowledge and experience. Therefore, they have

the motivation to accumulate and share individual knowledge

and experience.

b) Development Phase: The practices of development

phase are relatively simple in GDD, compared with the lifecy-

cle of regular project management process. The goals tracking

and status reporting is the only one practice that is compulsory

in this phase. Re-Launch is an optional practice according to

the tracking results.

The compulsory practice, i.e. goals tracking and status re-

porting, tracks and reports the status of all the goals identified

by the development team. And its main event is team weekly

meeting. Before the meeting, the owner of each goals takes

responsibility for gathering data and evidence to characterize

the status of the goal. Then the team leader will use a tool to

summarize the status of all the goals in one chart.

c) Postmortem Phase: In postmortem phase of GDD

method, the development team only discusses two questions.

1) How did all the goals identified in the development process

support the expectations of all the stakeholders? 2) How did

all the implementation solutions help to achieve project goals?

The answer for the first question will help the team find

improvement opportunities on goal elicitation; the answer for

the second issue will help the team identify effective solutions

as the best practices to support project goals. In this way,

knowledge and experiences created during the project are well

validated for future projects.

C. Cycle of GDD-KM

While GDD usually occurred within project, KM happened

across multiple projects. Therefore, from the perspective of

KM, GDD-KM should comprise of five typical steps, i.e.

knowledge creation, knowledge integration and formation,

knowledge dissemination and application, knowledge evolu-

tion and knowledge outdated. These five steps forms a cycle

which facilities knowledge evolution. Fig. 3 shows the cycle

of GDD-KM.

1) Knowledge Creation: In GDD-KM, all the engineers

within the project team should participate in the creation

of knowledge. However, since knowledge and experience in

GDD-KM typically includes set of project goals and related

implementation solutions, creation of knowledge may happen

through the whole project. For instance, in the launch phase

of GDD, all the team members identified project goals and

developed solutions to implement these goals. Both the goal

set and the solution set are valuable experience and knowledge.

Besides, the consensus among the team members created a

shared understanding of the knowledge and experience.

2) Knowledge Integration and Formation: The good aspect
of full participation of team members in creation of knowledge

and experience is that it helps motivate knowledge workers

since they are usually also the consumers of the knowledge.

Besides, they capture more valuable experience and knowl-

edge since they know what they expect from knowledge and

experience repository. However, with ad hoc manner, similar

knowledge even redundant knowledge in the knowledge and

291291291

Authorized licensed use limited to: Nanjing University. Downloaded on December 11,2020 at 04:25:35 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. A breakdown structure of project goals

Fig. 3. The cycle of GDD-KM framework

experience repository cannot be avoided. So tasks such as

conceptual generalization and representational formalization

[6] are also needed in GDD-KM. With conceptual gener-

alization, project team needs extra effort to generalize and

abstract context of certain goals and solutions, therefore, the

knowledge and experience gained from one project can apply

to other projects. With representational formalization, project

teams organize knowledge and experience in a way which

facilitates access and apply. In GDD-KM, the basic structure of

knowledge and experience repository is three layered. Fig. 4

shows the three layers. The top layer is the goal identified

by project teams in the organization. In fact, the content of

the top level also belongs to the concept of knowledge and

experience. With GDD-KM, several goal templates will be

defined to record the goals identified in former projects hence

to help new projects elicited goals. The intermediate layer is a

brief introduction to solutions to address goal on top level. To

be pragmatic, the description must be concise and perspicuous.

Details of the solutions are described on the bottom layer. On

this layer, detailed and concrete guidance are provided to carry

out the solutions and to satisfy goals on top level as well.

3) Knowledge Dissemination and Application: GDD-KM is

relatively distinct from the traditional KM approaches on its

integration of knowledge creation and application. Traditional

KM approaches assume that workers perform repetitive and

predictable tasks, so they broadcast information (e.g., email),

provide searchable databases, disseminate knowledge through

classroom training or printed reference documents. These

approaches separate learning and working [8]. While in GDD-

KM, full participation is highly encouraged in both creation

and application of knowledge and experience. Based on similar

goal template and corresponding solutions to goals across

multiple projects, dissemination of knowledge and experience

at organizational level can be feasible. In fact, since goals in

292292292

Authorized licensed use limited to: Nanjing University. Downloaded on December 11,2020 at 04:25:35 UTC from IEEE Xplore. Restrictions apply.

Fig. 4. Basic structure of knowledge and experience repository

GDD were interpreted as internal and external expectations

from relevant stakeholders, these expectations were similar

except for some technological details. Typical application

scenario is in the launch phase of GDD method when project

team elicits goals and develops implementation solutions to

goals.

a) Goals Elicitation: One challenge a software project
team will face at early stage is that how to elicit expectations

from relevant stakeholders comprehensively. With GDD-KM,

each project team is equipped with a goal template, which

provides a basis for further elicitation of project goals. Usually

with similar project context, e.g., later development iteration

of the same project, nearly no change needs to make to

the goal template. Even with different project context, most

expectations from stakeholders are addressed by the goal

template, hence project team will be at a good position to

modify the goal template to meet new expectations.

b) Goals Implementation Solution: With the basic struc-
ture of the knowledge and experience repository as depicted

in Fig. 4, solutions are attached to certain project goals.

Therefore, for those similar goals, there exist solutions in

the knowledge and experience repository already. Since most

project goals are similar across multiple projects, this helps a

lot for goal owners to develop implementation solution.

4) Knowledge Evolution: Knowledge is refined in evolution
phase. In this phase, every layer of knowledge in GDD-KM

(goal, solution and detail) is refined, updated, and detailed into

full conceptual knowledge structures.

Additionally, the focus of KM moves from a specific

knowledge transfer, such as how to execute an experiment and

reporting the results of an experiment, to a broader knowledge

evolution and sharing, such as experiment improvement and

how to combine data from different experiments. It means that,

after several refining cycles, the knowledge no longer stays in a

specific project level, but becomes resource that can be shared

and reused in future projects. In fact, this is also an important

step to support Knowledge Integration and Formation because
without properly refining, conceptual generalization might

encounter big challenge to handle massive knowledge debris

with various contextual information.

5) Knowledge Outdating: Knowledge is context-specific

and thus has to change with ever changing environment.

However, to be useful the knowledge repository should be

kept concise. This requires the knowledge stored to be kept

up to date. Appropriate changes need to be undertaken, while

outdated knowledge also needs to be discarded.

Different from other KM approaches that blend knowledge

outdate process into knowledge update (evolution) procedure

[9], in GDD-KM cycle, knowledge outdated acts as a specific

step at the same level as knowledge update. With caution,

outdated knowledge and experience should be removed from

the repository. For example, goal of process discipline can

be removed when process discipline was ingrained in the

organization culture, solution corresponding to certain goal

can be removed while better solutions were identified, and

technologies as the solution can be removed when it is

substituted or even deprecated, etc.

III. CASE STUDY

We applied GDD-KM in several projects both in industrial

environment and academic environment. Results indicated

several positive effects of GDD-KM in these projects. In one

student project, all the team members conducted effective

postmortem and accumulated valuable knowledge and expe-

rience. The purpose of this project is to develop a general

system with the function of generating schematic map for

NYOG (Nanjing Youth Olympic Games). The system should

be able to create accurate route, change the relative distance

between two adjacent significant features by zooming the im-

age, schematize the route and finally create a schematic map.

Using the development method described in [15], the team

finished the project and met the requirements. Meanwhile,

they also established an initial knowledge and experience

repository.

A. Implementation of GDD-KM

Typical steps in a GDD-KM cycle were supported by

GDD. Inversely, GDD-KM also helped the team practice GDD

method.

1) Knowledge Creation: During launch phase of GDD, the
whole project team established the first version of goal set and

grouped goals into four categories, in two kinds: external goals

(from expectations from senior management or customers)

and internal goals (from team members). In this way, a goal

template which is similar to Fig. 2 was then formed. This goal

template was used in the following several iterations of this

project.

After each goal was allocated to a team member, solutions

to implement the goal were then developed. As shown in

Fig. 5, to meet the quality goal, the team decided to rely on

reviews rather than testing to achieve high quality. To direct

practice, controlling parameters of the review process were

then defined in the details of the solution, for example, review

speed, proper duration for a certain review, etc. The whole

team then conducted a meeting to reach consensus on both

the goal set and corresponding solutions.

293293293

Authorized licensed use limited to: Nanjing University. Downloaded on December 11,2020 at 04:25:35 UTC from IEEE Xplore. Restrictions apply.

Fig. 5. Solutions to meet quality goal

2) Knowledge Integration and Formation: During the post-
mortem phase of GDD, the whole project team reviews

the data and information recorded during the development

to evaluate the effectiveness of goal elicitation process and

implementation solution to address the goals. Some valuable

experiences to meet similar goals were then integrated. For

instance, in this project, continuous integration and testing was

also identified as a solution to address quality goal. Therefore,

a new solution was added to the goal of “high quality of the

final product”.

3) Knowledge Dissemination and Application: In this case,
since the project team developed the whole system with

multiple iterations, each following iteration had similar context

as the first iteration. This provides a good foundation for

knowledge dissemination and application. In fact, the project

used most of the knowledge and experience gained in this

project in other projects. Feedback from team members indi-

cated positive results of GDD-KM (cf. subsection III-B).

4) Knowledge Evolution: In this project, the development
team found several useful approaches to get steady review

quality, e.g., making a customized review checklist at indi-

vidual level, using a total different environment than the lab

where the team developed the project, etc. Therefore, details

of the review-based solution were supplemented and evolved

to include new knowledge and experience.

5) Knowledge Outdating: At this early stage of application
of GDD-KM, knowledge outdating did not happen in this

project.

B. Project Results

This team finished the project on time and met most of

the goals identified during launch phase. We conducted an

investigation after the project to interview all the project team

members. Results showed several positive aspects of GDD and

GDD-KM.

1) About Postmortem: Most team members thought that

GDD-KM helped them to do better postmortem due to the

structured organization of the postmortem process and knowl-

edge and experience framework. Firstly, the goal template

provided them the concrete scope to analyze. Secondly, in-

formation summarized during postmortem was provided with

a certain application context.

2) About Knowledge and Experience Repository: The ba-
sic structure of knowledge and repository provided an easy

approach to capture and organize valuable information. With

GDD-KM, knowledge and experience can also be accumulated

and evolved in the repository. Besides, the goals template pro-

vides a fast way to retrieval information from the repository.

3) About Continuous Application of Knowledge and Expe-
rience: GDD works well in multiple iterations. Therefore,

GDD-KM provided a mechanism for fast and continuous

application of knowledge and experiences gained in former

iterations. This fact not only helped the team to complete the

project successfully, but also increased the motivation of the

team members to record knowledge and experience. Besides,

it also facilitated the verification and validation of knowledge

and experience through repeatedly application.

IV. DISCUSSION

Compared to other KM method, GDD-KM features in

several aspects, which may support its practical application

in software projects. However, there are still several con-

siderations to GDD-KM at this stage, which needs further

discussion.

A. Advantages

1) Motivation: The issue of motivation and incentives

recurred frequently in discussions of the utility of knowledge

management systems and appears to be a critical issue needing

further investigation. In many cases, the incentives based on

technical approaches only do not appear to be an effective

solution, as well as some social and management means. For

instance, one company participating in an interview conducted

by Hahn, and Subramani [16] created a new role within

the organization, the knowledge librarian. The knowledge

librarian is responsible for transferring content into the knowl-

edge repository by tagging user submissions with appropriate

keywords or meta-data tags. While this solves the problem

of increased burden on domain experts and users, this may

also create new problems. Since knowledge librarians are

not the individuals that actually create the knowledge objects

(e.g., documents, reports, videos), even though they may have

familiarity with the domain, they may not have an accurate

first-hand understanding of the content. Hence, the keywords

and meta-data tags appended by the knowledge librarian may

be inappropriate and as a result subsequent queries searching

for a knowledge resource may not retrieve the right document.

However, GDD-KM methods are based on Victor Vroom’s

motivation theory [17], which indicates that team members can

be highly motivated by clear approaches to achieve success,

and that is why each of the team members was required to

track a number of goals. The expectancy theory [18] says that

individuals have different sets of goals and can be motivated

if they believe that there is a positive correlation between

efforts and performance, favorable performance will result in a

desirable reward, the reward will satisfy an important need, the

desire to satisfy the need is strong enough to make the effort

worthwhile. Since team members all agree to track these goals

and they are all responsible for several goals, they are more

likely to participate in the knowledge accumulation.

294294294

Authorized licensed use limited to: Nanjing University. Downloaded on December 11,2020 at 04:25:35 UTC from IEEE Xplore. Restrictions apply.

2) Full-Team Participation: Learning is a fundamental part
of KM because employees must internalize (learn) shared

knowledge before they can use it to perform specific tasks.

Individuals primarily learn from each other, by doing, and

through self study. Knowledge also spreads from individuals to

groups, and throughout organizations and industries. KM aims

to elevate individual knowledge to the organizational level by

capturing and sharing individual knowledge and turning it into

knowledge the organization can access. Individuals eventually

perform tasks to achieve organizational-level goals. Therefore,

the iterative knowledge processing and learning activities at the

individual level are of utmost importance. As Peter M. Senge

says, “Organizations learn only through individuals who learn.

Individual learning does not guarantee organizational learning.

But without it no organizational learning occurs.” [19].

Full participation and team decision are highly recom-

mended in GDD-KM. By means of be responsible for several

goals, team members all take part in the management and are

more likely to have a shared understanding of the definition,

structure of their knowledge management system, as a result,

makes it much more easier to find some knowledge they

expects.

3) Integration of Development Management and Knowledge
Management: Organizations constantly need to decrease soft-
ware projects’ development time and costs. Avoiding mistakes

reduces rework; repeating successful processes increases pro-

ductivity and the likelihood of further success. So, organi-

zations need to apply process knowledge gained in previous

projects to future projects. Unfortunately, the reality is that

development teams do not benefit from existing experience

and they repeat mistakes even though some individuals in the

organization know how to avoid them. Project team members

acquire valuable individual experience with each projectthe

organization and individuals could gain much more if they

could share this knowledge.

Besides, in software development, every person involved

constantly makes technical or managerial decisions. Most of

the time, team members make decisions based on personal

knowledge and experience or knowledge gained using infor-

mal contacts. This is feasible in small organizations, but as

organizations grow and handle a larger volume of information,

this process becomes inefficient. Large organizations cannot

rely on informal sharing of employees’ personal knowledge.

Individual knowledge must be shared and leveraged at project

and organization levels. Organizations need to define processes

for sharing knowledge so that employees throughout the

organization can make correct decisions.

Firstly, every organization has its own policies, practices,

and culture, which are not only technical but also managerial

and administrative. New developers in an organization need

knowledge about the existing software base and local program-

ming conventions. Unfortunately, such knowledge typically

exists as organizational folklore. Experienced developers often

disseminate it to inexperienced developers through ad hoc

informal meetings; consequently, not everyone has access to

the knowledge they need. Passing knowledge informally is an

important aspect of a knowledge-sharing culture that should be

encouraged. Formal knowledge capturing and sharing ensures

that all employees can access it.

Secondly, software organizations depend heavily on knowl-

edgeable employees because they are critical to the project’s

success. However, accessing these people can be difficult.

Software developers apply just as much effort and attention

determining whom to contact in an organization as they

do getting the job done. These knowledgeable people are

also very mobile. When a person with critical knowledge

suddenly leaves an organization, it creates severe knowledge

gapsbut probably no one in the organization is even aware of

what knowledge they lost. Knowing what employees know is

necessary for organizations to create a strategy for preventing

valuable knowledge from disappearing. Knowing who has

what knowledge is also a requirement for efficiently staffing

projects, identifying training needs, and matching employees

with training offers.

Finally, software development is a group activity. Group

members are often geographically scattered and work in

different time zones. Nonetheless, they must communicate,

collaborate, and coordinate. Communication in software en-

gineering is often related to knowledge transfer. Collaboration

is related to mutual sharing of knowledge. Group members

can coordinate independently of time and space if they can

easily access their work artifacts. So, group members need a

way to collaborate and share knowledge independently of time

and space.

As Michael H. Zack mentioned [20], the degree to which

knowledge is an integral part of a company is defined not

by what the company sells but by what it does and how it

is organized. Many companies in recent years have redefined

their mission from one based on selling traditional products

to one based on exploiting knowledge.

With a consensus and a framework of knowledge manage-

ment, the knowledge can be easily transferred and understood

by team members as well as the other relevant crews in the

company. Many companies nowadays like one of the world’s

largest suppliers of cement realized that the exchange of

knowledge is the glue that holds the company together.

Products and services are only what are visible or tangible to

customers–they are the tip of the iceberg, most of what enables

a company to produce anything lays below the surface, hidden

within the so-called invisible assets of the organization–its

knowledge about what it does, how it does it and why.

GDD-KM ensures that knowledge is shared over time so

that the company benefits from past experience to make it

possible for people from various parts of organization to find

one another and collaborate to create new knowledge and

to provide opportunities and incentive for experiment and

learning. Moreover, the goals in our framework are stated in

short names of several words, one sentence’s comments and

a detail description. We use this structure to make the query

process faster and easier.

295295295

Authorized licensed use limited to: Nanjing University. Downloaded on December 11,2020 at 04:25:35 UTC from IEEE Xplore. Restrictions apply.

B. Limitation of GDD-KM

GDD-KM provides a pragmatic framework for knowledge

and experience management. However, there still exist several

limitations at this stage.

Firstly, GDD-KM is a build-in mechanism of GDD method.

Therefore, it highly relies on GDD. Project teams must use

GDD to manage their projects so as to provide the data needed

for GDD-KM, e.g., the goals template, the solutions attached

to certain goals, etc.

Secondly, GDD-KM is more suitable to handle what so-

called codification [21] strategy to manage knowledge and

experience. Within this approach, the role of KM is to support

the storage and retrieval of explicit documented knowledge

by people throughout the organization as and when required.

However, there exists another strategy called personalization

[21]. Within this strategy, KM is used to extend interpersonal

networks and the ability to connect and communicate with

one another [21]. We believe much can be gained by more

researches on how to mix the Codification and Personalization

via GDD-KM methods.

Thirdly, for pragmatic purpose, knowledge representation

in GDD-KM is based on natural language at this stage.

Redundant information and imprecise description cannot be

totally avoided. With increased size of the knowledge and

experience repository, it will be more and more difficult to

conduct knowledge integration and formation.

C. Research Consideration

The research in this paper indicated several positive results

of GDD-KM. However, there still exist several considerations

while applying GDD-KM in practice.

Firstly, the project described in this paper is a student’s

contest project. The difference on main purpose between

industrial projects and this academic project may affect the

results. For instance, for industrial projects, to finish project

on time, within budget and with high quality may constitute the

top goals; meanwhile, for contest projects, usually to finish the

project on time, with attractive GUI may become the top goals.

However, the project in this research was developed in summer

school when students worked just as full-time professionals.

Research conducted by Runeson et al. [22], [23] indicated that

with similar environment, similar improvements trends can be

identified both in industrial projects and academic projects. In

this sense, more reports on GDD-KM with industrial contexts

are necessary.

Secondly, considering the duration and staff size, the

projects we applied GDD-KM are not big projects. When

the scale of the project increases, the number of goals and

related solutions will also increase as well. Therefore, it will be

much more difficult manage knowledge and experience. The

Knowledge Integration and Formation step in GDD-KM cycle

is designed to address this issue, however, it requires enough

knowledge on software development and rich experience on

GDD.

V. CONCLUSION

Knowledge workers as software engineers now have more

information available than they could understand and apply,

while on the other hand, finding information relevant to the

task at hand is becoming increasingly critical. To address infor-

mation overload, KM approaches must provide the information

workers need, when they need it. The tree-structure goals and

three layer mode of representation in GDD-KM provide an

organized guidance for users to create, integrate and apply the

knowledge to future projects. Besides, thanks to the shared

goal template in different projects within organizations, the

corresponding solutions to these goals can also be shared

by these teams, which improve the knowledge transfer in

different projects. Moreover, the software development process

(i.e. GDD) and the knowledge management process (i.e.,

GDD-KM) are seamlessly integrated, which may facilitate its

adoption in practices.

Another contribution of GDD-KM is to help establish an

initial knowledge and experience repository according to a

common goal template. Schneider et al. mentioned that “Be

Specific” and “User Guidance” should be considered as two

significant success factors [2]. It means that, for one thing,

“Experience Repository” should be well-organized; for an-

other, “Repository” should be organized as simple and flexible

as possible to facilitate the usage of knowledge to the full

extent.

Our work is a worthy attempt to manage knowledge and

experience in software engineering pragmatically. There still

exist several interesting issues which need future research, for

example:

1) How to combine Codification with Personalization in
GDD-KM? As Anthony et al. [24] claimed that the

field is moving from first to second generation, KM is

characterized by knowing-in-action. This means Person-

alization became more and more important to make KM

useful. Therefore, more research needs to be conducted

to combine both strategies in GDD-KM.

2) How to handle the scale issue? With increased project
scale, KM will be more and more difficult and ineffec-

tive due to mass information. Therefore, to design new

approaches to represent knowledge and experience and

new methods to store and retrieve useful knowledge in

GDD-KM is a promising research direction.

ACKNOWLEDGEMENT

This work is supported by the National Natural Science

Foundation of China (Grant No.61572251).

REFERENCES

[1] I. Rus and M. Lindvall, “Knowledge management in software engineer-
ing,” IEEE Software, vol. 19, no. 3, p. 26, 1 May 2002.

[2] K. Schneider and J.-P. von Hunnius, “Effective experience repositories
for software engineering,” in Proceedings of the 25th International
Conference on Software Engineering (ICSE ’03). Washington, DC,
USA: IEEE Computer Society, 3 May 2003, pp. 534–539.

[3] M. H. Zack, “Rethinking the knowledge-based organization,” MIT sloan
management review, vol. 44, no. 4, p. 67, 1 July 2003.

296296296

Authorized licensed use limited to: Nanjing University. Downloaded on December 11,2020 at 04:25:35 UTC from IEEE Xplore. Restrictions apply.

[4] M. Alavi and D. E. Leidner, “Knowledge management systems: Issues,
challenges, and benefits,” Commun. AIS, vol. 1, no. 2es, February 1999.

[5] M. Zahedi, M. Shahin, and M. A. Babar, “A systematic review of knowl-
edge sharing challenges and practices in global software development,”
International Journal of Information Management, vol. 36, no. 6, pp.
995–1019, 31 December 2016.

[6] G. Fischer and J. Otswald, “Knowledge management: Problems,
promises, realities, and challenges,” IEEE Intelligent Systems, vol. 16,
no. 1, pp. 60–72, January 2001.

[7] F. Houdek, K. Schneider, and E. Wieser, “Establishing experience
factories at Daimler-Benz: An experience report,” in Proceedings of
the 20th International Conference on Software Engineering (ICSE ’98).
IEEE, 19 April 1998, pp. 443–447.

[8] J. Liebowitz, “A look at NASA goddard space flight center’s knowledge
management initiatives,” IEEE Software, vol. 19, no. 3, pp. 40–42, May
2002.

[9] A. Birk, T. Dingsøyr, and T. Stålhane, “Postmortem: Never leave a
project without it,” IEEE Software, vol. 19, no. 3, pp. 43–45, May 2002.

[10] M. Desmond, “Developers mix and match agile approaches,” 1
March 2010. [Online]. Available: http://adtmag.com/articles/2010/03/
01/developers-mix-and-match-agile-approaches.aspx

[11] V. Santos, A. Goldman, and C. R. B. de Souza, “Fostering effective
inter-team knowledge sharing in agile software development,” Empirical
Software Engineering, vol. 20, no. 4, pp. 1006–1051, 1 August 2015.

[12] M. A. Razzak and D. mite, “Knowledge management in globally dis-
tributed agile projects–lesson learned,” in 2015 IEEE 10th International
Conference on Global Software Engineering (ICGSE ’15). IEEE, 13
July 2015, pp. 81–89.

[13] B. Ramesh, “Process knowledge management with traceability,” IEEE
Software, vol. 19, no. 3, pp. 50–52, May 2002.

[14] S. Komi-Sirviö, A. Mäntyniemi, and V. Seppänen, “Toward a practical
solution for capturing knowledge for software projects,” IEEE Software,
vol. 19, no. 3, pp. 60–62, May 2002.

[15] G. Rong, D. Shao, H. Zhang, and J. Li, “Goal-driven development
method for managing embedded system projects: An industrial expe-
rience report,” in Proceedings of the 2011 International Symposium
on Empirical Software Engineering and Measurement (ESEM ’11).
Washington, DC, USA: IEEE Computer Society, 22 September 2011,
pp. 414–423.

[16] J. Hahn and M. R. Subramani, “A framework of knowledge management
systems: Issues and challenges for theory and practice,” in Proceedings
of the Twenty First International Conference on Information Systems
(ICIS ’00). Atlanta, GA, USA: Association for Information Systems,
10 December 2000, pp. 302–312.

[17] V. H. Vroom and E. L. Deci, Management and Motivation. Penguin,
1989.

[18] W. Van Eerde and H. Thierry, “Vroom’s expectancy models and work-
related criteria: A meta-analysis,” Journal of applied psychology, vol. 81,
no. 5, p. 575, October 1996.

[19] P. M. Senge, The Fifth Discipline Fieldbook: Strategies and Tools for
Building a Learning Organization. Crown Business, 2014.

[20] M. H. Zack, “Developing a knowledge strategy,” California Management
Review, vol. 41, no. 3, pp. 125–145, April 1999.

[21] D. Torgeir and R. Conradi, “A survey of case studies of the use of
knowledge management in software engineering,” International journal
of software engineering and knowledge engineering, vol. 12, no. 4, pp.
391–414, August 2002.

[22] P. Runeson, “Using students as experiment subjects–an analysis on grad-
uate and freshmen student data,” in Proceedings of the 7th International
Conference on Empirical Assessment in Software Engineering, 8 April
2003, pp. 95–102.

[23] M. Höst, B. Regnell, and C. Wohlin, “Using students as subjects—
a comparative study of students and professionals in lead-time impact
assessment,” Empirical Software Engineering, vol. 5, no. 3, pp. 201–214,
1 November 2000.

[24] A. F. Buono and F. Poulfelt, Challenges and Issues in Knowledge
Management. IAP, 2005.

297297297

Authorized licensed use limited to: Nanjing University. Downloaded on December 11,2020 at 04:25:35 UTC from IEEE Xplore. Restrictions apply.

