
A Systematic Review of Logging Practice in
Software Engineering

Guoping Rong
Software Institute

Nanjing University

Nanjing,Jiangsu,P.R.China

ronggp@nju.edu.cn

Qiuping Zhang
The department of

computer science and technology

Nanjing University

Nanjing,Jiangsu,P.R.China

131220111@smail.nju.edu.cn

Xinbei Liu, Shenghiu Gu
Software Institute

Nanjing University

Nanjing,Jiangsu,P.R.China

Abstract—Background: Logging practice is a critical activity in
software development, which aims to offer significant information
to understand the runtime behavior of software systems and
support better software maintenance. There have been many
relevant studies dedicated to logging practice in software en-
gineering recently, yet it lacks a systematic understanding to
the adoption state of logging practice in industry and research
progress in academia. Objective: This study aims to synthesize
relevant studies on the logging practice and portray a big picture
of logging practice in software engineering so as to understand
current adoption status and identify research opportunities.
Method: We carried out a systematic review on the relevant
studies on logging practice in software engineering. Results: Our
study identified 41 primary studies relevant to logging practice.
Typical findings are: (1) Logging practice attracts broad interests
among researchers in many concrete research areas. (2) Logging
practice occurred in many development types, among which the
development of fault tolerance systems is the most adopted type.
(3) Many challenges exist in current logging practice in software
engineering, e.g., tradeoff between logging overhead and analysis
cost, where and what to log, balance between enough logging and
system performance, etc. Conclusion: Results show that logging
practice plays a vital role in various applications for diverse
purposes. However, there are many challenges and problems to
be solved. Therefore, various novel techniques are necessary to
guide developers conducting logging practice and improve the
performance and efficiency of logging practice.

Keywords—Logging Practice, Systematic Literature Review,
Software Engineering

I. INTRODUCTION

As a technique to collect the runtime information of system

behavior, logging practice is more and more important in

modern software development and maintenance. By inserting

logging statements in the source code, key information about

the behavior of software systems could be captured and

recorded in logs. These logs play a vital role in debugging,

failure handling and system recovery, system analysis, and so

on [1], which help a lot in the operation and maintenance of

software systems [2].

Logs are very powerful and efficient for locating and

resolving the problems when the software systems are be-

coming more and more complicated. Since logging practice

is the starting point to generate logs, many researchers are

dedicating to develop unified logging specifications or tools to

guide other developers carrying out logging or even support

automatic logging. Besides, studies focusing on better methods

of logging practice are also abundant. Nevertheless, we still

lack necessary understanding towards the adoption status and

research progress of logging practice in software engineering.

To this end, we carried out a systematic review on the logging

practice in software engineering by following the guideline

proposed by Kitchenham etc. [3] so as to establish a holistic

view.

As a result, we identified 41 relevant primary studies on this

topic. Based on the evidence we collected, we systematically

illustrate the occasions that logging practice is needed, the

challenges, the current state of the art and the future research

directions of logging practice in software engineering.

The rest of this paper is organized as follows: Section II

describes the background and related work of logging practice

in software engineering. Section III illustrates the steps of our

research and the results and findings are discussed in Section

IV. We discuss the threats to validity at this stage in Section

V and finally conclude this paper in Section VI.

II. BACKGROUND & RELATED WORK

There have been several frameworks providing supports for

logging, such as Apache Logging Services, Windows Event

Log, IBM Common Event Infrastructure. These frameworks

offer APIs for creating, collecting and parsing log entries,

but leaving the implement of logging (i.e. to insert logging

statements in source code) for developers.

Logging is a significant activity in many fields, such as

software debugging [4], failure recovery [5], system analysis

[6], etc. Therefore, a large number of studies pay close

attention to specifying how to log appropriately or how to

improve logging [7] [8] [9] [10].

By logging, we can collect a great deal of key information

on the runtime behavior of software systems for postmortem

analysis. For example, Oliner et al. [11] presented an overview

of logging analysis, including the application areas of log

analysis and the methods to analyze logs. Security related

events can be extracted from logs for analysis too, which are

very valuable in terms of system security [6].

2017 24th Asia-Pacific Software Engineering Conference

978-1-5386-3681-7/17 $31.00 © 2017 IEEE

DOI 10.1109/APSEC.2017.61

534

2017 24th Asia-Pacific Software Engineering Conference

978-1-5386-3681-7/17 $31.00 © 2017 IEEE

DOI 10.1109/APSEC.2017.61

534

2017 24th Asia-Pacific Software Engineering Conference

978-1-5386-3681-7/17 $31.00 © 2017 IEEE

DOI 10.1109/APSEC.2017.61

534

Authorized licensed use limited to: Nanjing University. Downloaded on December 11,2020 at 04:24:33 UTC from IEEE Xplore. Restrictions apply.

Message logging and secure logging are two major types

of logging which are used for specific purposes. Message

logging [12] is a significant activity in fault-tolerant systems,

which is able to help system recover from process crash. Each

process periodically logs the messages it received. When a

process failure occurs, it can replay the messages in the logs

in the sequence of the process received, and thus restore to its

original state before the failure. However, there are still some

issues [13] [14] regarding the performance of message logging

protocols, such as the size of messages that should be logged,

the time for recovering, the failure-free performance.

Since logs potentially store a lot of information of software

systems, some of the information may be very sensitive,

therefore it is important to keep the logging system from

intrusion to avoid fateful consequences. Secure logging [15]

[16] is a mechanism intended to guarantee log data correct for

future use.

III. RESEARCH DESIGN

According to the guidelines proposed by Kitchenham et al.

[3], we carried out our systematic review on logging practice.

A. Research Questions

To address the objective of identifying the adoption status

and the research progress of logging practice, we designed five

research questions as follows.

RQ1: What kinds of software development require logging
practice?

RQ1 aims to identify the application context of logging

practice so as to guide practitioners if them involve in software

development with similar context. For example, high perfor-

mance computing systems require logging to ensure perfor-

mance in particular. Besides, we also noticed that software

development involving multi-core, distributed systems, etc.

also requires logging practices. By collecting the types of

software development regarding logging practices, we intent to

identify situations that logging practice is potentially needed.

RQ2: How do developers conduct logging practice at
present?

RQ2 is mainly answered in two aspects, how developers

utilize log tools as well as where and what they code in log

statements. Findings derived in this research question might

provide useful guidance for practitioners to carry out logging

practice.

RQ3: What issues and challenges need to be addressed in
logging practice?

RQ3 intends to recognize the issues and challenges regard-

ing the practical adoption of logging practice in industry. For

instance, fully-automatic tools need to be designed to decide

the location and content of log statement with high accuracy

for the sake of reducing developers’ workload. Unfortunately,

it is not easy at present. By summarizing recognized issues

and challenges, developers may make better decisions when

logging practice is needed in their development. Meanwhile,

researchers may also find clues to carry out relevant studies.

RQ4: What is the state-of-the-art of the research on logging
practice?

RQ4 attempts to portray a landscape on the researches of

logging practice up till now, including the research topic, their

findings, their future work, etc. RQ5 shows researchers the

way that which directions are worth further investigation.

B. Research scope

To constrain the scope of this study, two noteworthy points

should be elaborated here. First of all, although research on log

analysis constitutes a large portion of log-related studies and

there are numerous studies on this hot topic, we did not include

this topic as our research concern. Log analysis aims at uti-

lizing existing log files to detect bugs, optimize performance,

etc. However, our study focuses on developer’s perspective,

i.e. to investigate logging practice which is the development

practice that software developers insert statements into source

code to collect the runtime information for log analysis in

particular. As for the other, our SLR excluded the topics related

to user behavior logging, e.g., logging the expression of users

via camera or logging the users’ browsing trials on some

websites (e.g., e-commerce sites). While these types of logging

usually works for business purpose, we only intend to focus

on software engineering.

C. Search Process

Seven researchers are involved in this study. To guarantee

work quality during publication screening and data extraction,

at least two researchers took care of one paper at the same

time. Besides, one experienced researcher cross-checked the

work randomly. In addition, regular meetings were held among

the researchers in order to deal with the issues and divergence

occurred during the study.

1) Manual search: The manual search was directed towards

the top conferences and journals in software engineering

including: International Conference on Software Engineering

(ICSE), IEEE Transactions on Software Engineering (TSE),

Empirical Software Engineering (EMSE), IEEE International

Conference on Software Maintenance and Evolution (ICSME),

IEEE Working Conference on Mining Software Repositories

(MSR) and Journal of Systems and Software (JSS)

The publication time span was constrained from 2000

to 2016 for the reason that the number of papers related

to log seems to be quite small before 2000 based on our

basic concept of study population derived from preliminary

automatic search. Finally, we got 42 papers on log in total

and then obtained 13 papers focusing on logging practice after

screening. These resulted papers portrayed a landscape for us

to make a better understanding of the research status of logging

practice and laid the foundation for the subsequent stages.

2) Proposing search string: After several rounds of tuning,

the resulting search string is then given below:

((logging OR log) AND (practice OR tool OR technique)
AND (development OR code OR programming)) in title or
keyword or abstract

535535535

Authorized licensed use limited to: Nanjing University. Downloaded on December 11,2020 at 04:24:33 UTC from IEEE Xplore. Restrictions apply.

TABLE I
SELECTION CRITERIA

Inclusion Criteria
I1. Publications that investigate the methodology for logging practice.
I2. Publications that investigate the tools/frameworks/systems which

support logging practice.
I3. Publications that propose a standard for logging practice.
I4. Publications that are peer-reviewed (conference paper, journal

article).
I5. Publications that are primary studies on logging practice.
Exclusion Criteria
E1. Publications that investigate log analysis.
E2. Publications that investigate the usage of logs.
E3. Publications that investigate the technologies on logging user

behaviors.
E4. Publications that are not written in English.
E5. Additionally, short papers, demo or industry publications are

excluded.

Note that each word in this search string needs to trans-

formed into different term variants so as to be applied in

diverse search engines , e.g., practices is one of the variant of

practice.

3) Automatic search: The automatic search was performed

in five popular electronic libraries, i.e. ACM Digital Li-

brary, IEEE Xplore, ScienceDirect, Wiley Online Library,

and Springer Link, according to suggestions derived in most

existing SLR studies [17]. The automatic search results in

19641 articles, which to a certain degree reflects the attention

researchers paid to this research topic.

D. Study Selection

Basically, the study selection process is divided into two

steps, i.e. the Quickly Scanning and Entirely Reading respec-

tively.

1) Quickly Scanning: During this step, screening of titles

and abstracts for the potential studies was performed according

to the inclusion & exclusion criteria detailed in Table I. As for

those papers unable to be decided just on titles and abstracts,

we postponed the decision to the following steps. As the result,

we included 71 publications at this stage.

2) Entirely Reading: Given the initially identified publica-

tions, we unfolded an entirely reading for the sake of deciding

the uncertain ones and eliminating the irrelevant ones. As

a result, a total of 41 publications were identified for final

analysis.

E. Data Extraction

In order to collect evidence to answer the research questions,

a data extraction schema was applied to collect relevant data

from the studies we identified previously, as listed in Table II.

IV. RESULTS

A. Overall Status

Our SLR finally identified 41 papers1 related to the logging

practice for the final analysis. The 41 papers are composed of

26 conference papers and 15 journal articles. Fig. 1 presents

1http://tinyurl.com/y7es7hpd

Fig. 1. The distribution of the papers’ published years

the distribution of the published years of the papers. The

majority of the papers were published after 2001, but there are

two outliers published in 1990 and 1996 respectively. It can

be seen that the logging practice has always been a research

focus in software engineering in recent years. One noteworthy

fact is that since we carried out this study early this year, there

is only one study in 2017.

B. Types of Software Development Needing Logging Practice
(RQ1)

Given the collected evidence, it is obvious that logging

practice has been involved in several main types of software

development. As shown in Fig. 2, logging practice has been

generally applied in systems where fault tolerance is one

of the most vital requirements ([S22], [S31], [S24], [S6],

[S26], [S9], [S32], [S4], [S8], [S5], [S13]). In fault tolerance
systems, logging usually plays a vital role to support rollback

recovery. Systems can recovery from a failure using necessary

messages recored in logs. Besides, it intrigued us that six

papers among the eleven which mention fault tolerance could

also be categorized as high performance computing system

([S22], [S31], [S24], [S6], [S32], [S13]). Developers apply

logging practice to ensure high performance and reliability, so

as to reduce the workload of maintenance.

Right following fault tolerance systems, logging for secure
purpose is another major software development type ([S34],

[S23], [S33], [S3], [S2], [S37], [S1]). During the data extrac-

tion process, we noticed that secure logging usually appeared

along with audit log as a rule except one paper ([S1]). Audit

logs ordinarily include some sensitive information which may

be modified illegally by attackers.

In addition, open source projects ([S7], [S39], [S17], [S21],

[S20]) and some complex systems ([S10], [S40]) also utilize

logging for preferable bug tracking and maintenance. As for

distributed systems ([S16], [S29], [S9], [S32], [S18]), logging

is used to deal with the predicament in distributed circum-

stance particularly, e.g., obtaining a correct behavior sequence.

Furthermore, in concurrent environment ([S19], [S35]) and

multicore systems ([S19], [S15]), logging acts a pivotal part

in making it possible to trace the execution.

536536536

Authorized licensed use limited to: Nanjing University. Downloaded on December 11,2020 at 04:24:33 UTC from IEEE Xplore. Restrictions apply.

TABLE II
THE DATA EXTRACTION SCHEMA

Attribute Description To answer RQ
Author The author(s) of the publication. Metadata
Title The title of the publication.
Year The published year of the publication.
Venue The publisher of the publication.
Characteristics related to logging
practice

Macroscopically, the context of projects which conduct logging practice, e.g., type
of project, scale of project, etc.; Microscopically, the distinctions between code with
logging statements and those without.

RQ1

Research objective Logging practices applied in industry, mainly in two perspectives. Manual coding:
focusing on the strategies or specifications of logging in code; Automated tools:
focusing on the improvement or optimization of code via the log statements generated
by automated tools.

RQ2

Issues and challenges Issues and challenges mentioned in the paper when it comes to conducting logging
practice.

RQ3

Research question The research question(s) of the selected paper. RQ4
Research method The method adopted in the selected paper.
Conclusion The conclusion(s) of the selected paper.
Future work The direction of the investigation of logging practice mentioned in the paper.

Fig. 2. Development context mentioned in papers

It should be pointed out that the types of software de-

velopment may overlap here. For example, an open source
project might also be a secure system. On one hand, papers

we retrieved in this study normally did not contain detailed

information on the systems. One the other hand, however, the

development types we discussed above have presented useful

information already, which fits our original research objective

at this stage.

C. How To Do Logging (RQ2)

Research question 2 investigated the techniques used for

logging practices. The collected evidence shows various types

of logging practices and techniques used in practice.

One common focus is message logging, which is inves-

tigated in 9 papers ([S22], [S31], [S24], [S6], [S26], [S9],

[S32], [S5] and [S13]). Message logging is composed of

a family of algorithms and used as an important rollback

recovery technique, which contributes to fault tolerance in

practice. Most message logging are designed and implemented

at library level, such as MPI (Message Passing Interface)

library, and used to alternate Checkpoint/Restart as a common

approach for fault tolerance. Protocol is unquestionably the

main concern in message logging. Existing optimistic message

logging protocols saves dependency information at regular

intervals and replays them when needed. So overhead and

memory pressure might be relatively high, and scalability

might be limited as well.

Another common focus is secure logging, which is inves-

tigated in 7 papers ([S34], [S23], [S33], [S3], [S2], [S37]

and [S1]). Logging practices focusing on secure logging

usually compose logging systems, which aims at improving the

robustness on their own and serves for system accountability,

which is why the integrity of the log entries is, beyond all

doubt, a cardinal requirement for secure logging systems. In

order to improve the logging systems themselves, they are built

above authentic standards, procedures, protocols or techniques,

such as Syslog [S34], tamper-proof logging protocols [S33]

and cryptographic log protection [S23], [S37].

Industrial projects are another type of main concern of

logging practices. General approaches to instrument projects

with log messages include ad-hoc logging, general-purpose

logging libraries and specialized logging libraries [S7]. To

be specific, logging in industry relies on various models

and frameworks, such as Apache log4cxx [S36], [S7], [S39],

[S28], [S41], [S21], [S20], Apache Commons Logging [S20],

SLF4J [S20], Logback [S36], POCO C++ Libraries [S36],

LogicPoet [S36], syslog [S39] and cyclic debugging [S16].

Meanwhile, there are several log levels like TRACE, DEBUG,

INFO, WRAN, ERROR, and FATAL, which can be set by

developers to deal with different development tasks within

various contexts[S7], [S39], [S40], [S17], [S21], [S14], [S20].

D. Challenges of Logging Practice (RQ3)

It can be observed that many studies ([S10], [S38], [S39]

and [S28]) point out that, in practice, there are frequently

subjective and arbitrary logging practices because the im-

plementation of logging mostly depends on the knowledge

and expertise of the developers even with logging libraries.

In other words, logging practices lack formal specifications

and systematic design [S28], [S41], [S35]. As a result, the

537537537

Authorized licensed use limited to: Nanjing University. Downloaded on December 11,2020 at 04:24:33 UTC from IEEE Xplore. Restrictions apply.

logs can be incompleteness and inaccurate. Owing to the

bad performance of logging practices, more effort would be

spent on adjusting logging statements [S20]. Therefore, it is

important for software developers to know where to log and

what to log. However, as studies [S38] [S39] implied, failures

are hard to predict so that it is hard to determine where to log.

Logging is a helpful activity, but how to log appropriately

and effectively is a critical problem. Logging frameworks are

required to be flexible for developers to dynamically insert

or delete logging statements, as well as be specific to obtain

structured and high-qualified logs [S36], [S12]. In reality, it is

very likely for developers to log either too little or too much in

software development [S3], [S41], [S21], [S14], [S20]. Log-

ging too little may result in insufficient runtime information for

postmortem analysis to diagnose and understand the behavior

of software systems, whereas logging too much not only takes

developers’ time to write and maintain the statements but

also causes runtime overhead. What’s worse, excessive logs

make it much difficult to discover the useful information for

postmortem analysis.

It is an important issue of logging practice that how to make

the tradeoff between logging overhead and analysis cost [S4],

[S11]. Logging provides necessary runtime information for

postmortem analysis. Therefore, adequate logging is important

for understanding the problems comprehensively, but it is

also equally important to reduce the cost for log analysis. In

this sense, accurate logging that generate proper size of logs

which contain enough information for analysis is an important

research topic.

E. State of Art of Logging Practice (RQ4)

In general, we can categorize the 41 studies into two

types. The first type mainly focuses on providing guidance

for developers to conduct logging practice. The second type

focuses on improvement to current practice and method to

perform logging practices. To be specific, both types also

contain relevant studies to devise automatic tools.

a) Guide Logging Practice: Several studies focus on

guiding software developers to perform logging practice dur-

ing coding. For example, the study conducted by Fu et al.

[S14] systematically investigated where to log from industrial

systems. Yuan et al. [S39] and Chen et al. [S7] conducted

two quantitative characteristic studies that focused on the log

modification and Pecchia et al. [S28] studied event logging

practices by assessing an industrial software development

process. These studies analyzed the logging practice or logs

in industrial software development to form useful suggestions,

which could be taken as guidelines for logging practice. In

study [S21], the reasons of log changes are investigated and

then just-in-time suggestions for log changes during coding

can be automatically provided. Besides of this study, there are

several studies [S41][S30][S20][S17] that developed automatic

tools to support logging practice.There is another important

concern in logging practice which is the tradeoff between log-

ging and analysis [S11][S18][S25]. These studies investigated

how to log with minimal overhead and meanwhile guaran-

tee enough data for efficient postmortem analysis. Another

research concern belonging to this type of study is the storage

of logs. For example, several studies [S2][S1][S33] take an

insight into the secure storage of the logs.

b) Improve Logging Practice: Another category of the

relevant studies is about how to improve the logging prac-

tice in terms of functionality, efficiency and scalability

([S36][S4][S27][S15][S29]). Besides, there are also several

studies focusing on enhancing logging practice so as to

improve the capability for system dependability evaluation

[S10], replay [S27], failure diagnosis [S40][S38], etc. Message

logging is designed for recovery from failure in fault-tolerance

systems([S26][S6][S13][S24][S5][S31][S22][S9]). The size of

message logs and the scalability are two big issues. For

example, the study [S26] presented a technique to reduce the

messages logged by uncoordinated checkpointing algorithms,

while [S6] presented a hybrid approach that combines co-

ordinated and non coordinated checkpointing to reduce the

overhead, and meanwhile, the studies [S5][S31] aimed at good

scalability. There are five studies that presented their designed

tools to improve the logging. The studies [S16] and [S35]

presented their tools to verify system behaviors by analyzing

the date logged at runtime, while [S19] and [S8] described

their logging and replaying tools with as less as possible

cost. The study [S12] illustrated a dynamic logging facility

for networked embedded systems to achieve better flexibility,

efficiency, and high synchronization accuracy.

c) Research Direction in Future: Researchers already

involved in practice logging usually possess a better position

to recognize important topics which need further investigation.

With this consideration, we summarized the future research

work identified by these researchers briefly to provide clues

for future research direction. Generally, we can classify these

future work into two major categories, i.e. the specific im-

provement and the general directions for future research. For

studies in the first category, several authors discussed future

work to improve their current work with specific purpose.

For example, the study [S21] investigated the reasons of

log statement changes in source code so as to summarize

and provide suggestions to developers to make log changes.

Researchers suggested that feedback collected from actual de-

velopers should be considered to achieve better understanding

and improvement of the method. In study [S11], the authors

identified the branches that need to be logged to reduce the

total number of paths for trace analysis, and therefore to

address the balance between instrumentation overhead and

debugging time. The extension of this approach for multi-

thread applications forms the topic for future work. Tasiran

et al. [S35] illustrated how to verify system behaviors by

analyzing runtime information and the future work should be

that applying their techniques to industrial software. For future

research directions with general purpose, we identified six

research directions in 5 studies. 1) The first future work should

be more powerful logging tools to support logging automati-

cally[S14][S10], which can not only reduce developers’ efforts

to write logging statements but also standardize the logs so as

538538538

Authorized licensed use limited to: Nanjing University. Downloaded on December 11,2020 at 04:24:33 UTC from IEEE Xplore. Restrictions apply.

to facilitate log analysis. 2) Besides, logging on demand should

be investigated to dynamically generate the necessary logs so

as to reduce redundant logs [S14]. 3) In addition, end-to-end

logging is another direction to help picture the behaviors of

the system [S14]. 4) Moreover, it can be significantly useful

to give logs a tag when generation and thus logs can be

categorized for better postmortem analysis[S14]. 5) According

to [S41], current logging is all static and what to log is

determined before runtime. Therefore runtime logging can be

further investigated for efficient logging practice. 6) Lastly,

balance between logging and analysis [S11][S18] is always a

significant focus for further study.

V. THREATS TO VALIDITY

We intend to provide a comprehensive and systematic

review on logging practice in software engineering. However,

there are some threats to validity that need further discussion.

First, although we tuned the search string in this study

several rounds, it is still difficult to achieve good balance

between the huge number of articles and the coverage of

articles retrieved in manual search. Besides, various search

engines treat search string in different ways, leading slight

adjustment to the search string for specific search engines. As

a consequence, it is possible that several relevant papers may

have been neglected.

Second, the evidence in the papers may be insufficient to

comprehensively picture the whole adoption of logging prac-

tice in industry. We noticed that there are many materials on

various technical websites, providing suggestions to perform

logging practices in software projects. To guarantee the quality

of studies, we did not include these evidence at this stage.

VI. CONCLUSION

Logging practice plays a vital role in modern software de-

velopment and maintenance. This paper presents a systematic

review on existing studies with the topic of logging practice in

software engineering. Based on 41 identified papers, we gain

an insight of the industry adoption and the research progress

of logging practice in software engineering. The contribution

of our work can be highlighted as follows:

First, we carried out a systematic review with the topic

of logging practice in software engineering to portray a big

picture of the adoption status and research progress. To the best

of our knowledge, this might be the first systematic review on

logging practice.

Second, our investigation implies that although the im-

portance of logging practice has been recognized by many

practitioners and researchers, there is still a lack of suitable

guidance to help developers conduct efficient logging practice.

As the result, most developers carry out logging practice

mainly depending on personal experience.

Third, a balance (or tradeoff) between extensive logs and

lost-cost analysis is a critical challenge regarding logging prac-

tice. Moreover, this issue may also impact system performance

due to the fact that most logging statements require extra

computer resources.

ACKNOWLEDGMENT

The authors would like to thank Dexian Yu, Hui Wang and

Xin Kang for their help on determine the research questions

and improving the protocol. We also thank them for collabo-

ration on screening and identifying relevant papers.

REFERENCES

[1] A. Pecchia, M. Cinque, G. Carrozza, and D. Cotroneo, “Industry prac-
tices and event logging: Assessment of a critical software development
process,” in Proceedings of the 37th IEEE International Conference on
Software Engineering (ICSE ’15). IEEE, 16 May 2015, pp. 169–178.

[2] M. D. Syer, Z. M. Jiang, M. Nagappan, A. E. Hassan, M. Nasser,
and P. Flora, “Leveraging performance counters and execution logs to
diagnose memory-related performance issues,” in Proceedings of the 29th
IEEE International Conference on Software Maintenance (ICSM ’13).
IEEE, 22 September 2013, pp. 110–119.

[3] B. A. Kitchenham and S. Charters, “Guidelines for performing systematic
literature reviews in software engineering,” Technical Report EBSE 2007-
001. Keele University and Durham University Joint Report, 9 July 2007.

[4] D. Yuan, H. Mai, W. Xiong, L. Tan, Y. Zhou, and S. Pasupathy, “SherLog:
Error diagnosis by connecting clues from run-time logs,” ACM SIGARCH
Computer Architecture News, vol. 38, no. 1, pp. 143–154, 13 March 2010.

[5] E. Meneses and L. V. Kalé, “Camel: Collective-aware message logging,”
The Journal of Supercomputing, vol. 71, no. 7, pp. 2516–2538, 1 July
2015.

[6] J. P. Leite, “Analysis of log files as a security aid,” in Proceedings of the
6th Iberian Conference on Information Systems and Technologies (CISTI
’11). IEEE, 15 June 2011, pp. 1–6.

[7] Q. Fu, J. Zhu, W. Hu, J.-G. Lou, R. Ding, Q. Lin, D. Zhang, and T. Xie,
“Where do developers log? an empirical study on logging practices in
industry,” in Companion Proceedings of the 36th International Conference
on Software Engineering (ICSE Companion ’14). New York, NY, USA:
ACM, 7 June 2014, pp. 24–33.

[8] G. Lee, J. Lin, C. Liu, A. Lorek, and D. Ryaboy, “The unified logging
infrastructure for data analytics at Twitter,” Proceedings of the Vldb
Endowment, vol. 5, no. 12, pp. 1771–1780, 1 August 2012.

[9] D. Yuan, J. Zheng, S. Park, Y. Zhou, and S. Savage, “Improving software
diagnosability via log enhancement,” ACM Transactions on Computer
Systems (TOCS), vol. 30, no. 1, pp. 4:1–4:28, 1 February 2012.

[10] S. Lal, N. Sardana, and A. Sureka, “LogOptPlus: Learning to optimize
logging in catch and if programming constructs,” in Proceedings of the
40th Annual Computer Software and Applications Conference (COMP-
SAC ’16). IEEE Computer Society, 10 June 2016, pp. 215–220.

[11] A. Oliner, A. Ganapathi, and W. Xu, “Advances and challenges in
log analysis,” Communications of the ACM, vol. 55, no. 2, pp. 55–61,
February 2012.

[12] L. Alvisi and K. Marzullo, “Message logging: Pessimistic, optimistic,
causal, and optimal,” IEEE Transactions on Software Engineering,
vol. 24, no. 2, pp. 149–159, February 1998.

[13] A. P. Sistla and J. L. Welch, “Efficient distributed recovery using
message logging,” in Proceedings of the eighth annual ACM Symposium
on Principles of distributed computing. ACM, 1989, pp. 223–238.

[14] E. N. Elnozahy and W. Zwaenepoel, “On the use and implementation of
message logging,” in Fault-Tolerant Computing, 1994. FTCS-24. Digest
of Papers., Twenty-Fourth International Symposium on. IEEE, 1994, pp.
298–307.

[15] R. Accorsi, “Towards a secure logging mechanism for dynamic systems,”
Proceedings of It Security Symposium, 2005.

[16] S. Sackmann, J. Strker, and R. Accorsi, “Personalization in privacy-
aware highly dynamic systems,” Communications of the Acm, vol. 49,
no. 9, pp. 32–38, 2006.

[17] H. Zhang, M. A. Babar, and P. Tell, “Identifying relevant studies in
software engineering,” Information and Software Technology, vol. 53,
no. 6, pp. 625–637, 30 June 2011.

539539539

Authorized licensed use limited to: Nanjing University. Downloaded on December 11,2020 at 04:24:33 UTC from IEEE Xplore. Restrictions apply.

