
Can You Capture Information As You Intend To? A
Case Study on Logging Practice in Industry

Guoping Rong†, Yangchen Xu‡, Shenghui Gu‡, He Zhang†, Dong Shao†
State Key Laboratory of Novel Software Technology, Software Institute, Nanjing University, Nanjing, China

†{ronggp, hezhang, dongshao}@nju.edu.cn, ‡{mf1932211, dz1732002}@smail.nju.edu.cn

Abstract—Background: Logs provide crucial information to
understand the dynamic behavior of software systems in modern
software development and maintenance. Usually, logs are pro-
duced by log statements which will be triggered and executed
under certain conditions. However, current studies paid very
limited attention to developers’ Intentions and Concerns (I&C) on
logging practice, leading uncertainty that whether the developers’
I&C are properly reflected by log statements and questionable
capability to capture the expected information of system be-
haviors in logs. Objective: This study aims to reveal the status
of developers’ I&C on logging practice and more importantly,
how the I&C are properly reflected in software source code in
real-world software development. Method: We collected evidence
from two sources of a series of interviews and source code
analysis which are conducted in a big-data company, followed by
consolidation and analysis of the evidence. Results: Major gaps
and inconsistencies have been identified between the developers’
I&C and real log statements in source code. Many code snippets
contained no log statements that the interviewees claimed to have
inserted. Conclusion: Developers’ original I&C towards logging
practice are usually poorly realized, which inevitably impacted
the motivation and purpose to conduct this practice.

Index Terms—logging practice, developer, intentions and con-
cerns, inconsistencies

I. INTRODUCTION

Logging practice is a widely used technical approach in

modern software development and maintenance. In general,

logging practice can record the program’s behavior during

execution and thus provide valuable information (usually

contained in log files) for quality management practices later

on, e.g., program analyzing, debugging, and so on. On some

occasions, such information is the only data source avail-

able in production environments [1]–[3]. Due to this feature,

logging practice attracts a lot of attention among software

engineering practitioners and researchers, resulting in many

advanced logging methods, frameworks, and tools. Neverthe-

less, a noteworthy fact is that the current mainstream logging

practice still relies mainly on the developers to manually inject

log statements at the appropriate places in the source code.

Therefore, the developers’ personal expertise and experiences

play a vital role to determine the place (where to log?) and

the content (what to log?) of a log statement. To facilitate

understanding, we clarify the terminology and some relevant

concepts around logging practice in Table I.

Normally, developers should write log statements with spe-

cific Intentions, e.g., to capture a performance anomaly or just

plain errors. Meanwhile, logging carries certain costs such as

TABLE I
THE TERMINOLOGY ADOPTED IN THIS PAPER

Log A log is a collection of the execution outputs of log statements,
which is usually stored in a textual file or a database.

Log Statement A log statement is a statement placed in the source code that
can output a record of the behavior of a given program during
its execution.

Logging Practice Logging practice refers to multiple practical tasks in logging,
from inserting log statements into source code, to using the
information provided by generated logs to help program debug-
ging and analyzing. In general, logging practice includes log
placement and log analysis.

Log Placement Log placement is a part of logging practice that refers to
decisions made by developers on the places (where to log?)
and contents (what to log?) of log statements in source code.

Log Analysis Log analysis is another part of logging practice that makes use of
generated logs to achieve analysis tasks such as error debugging,
performance analysis, system behavior understanding, etc.

Log Level Log level reflects the severity of the log message. It allows
developers to specify the appropriate amount of logs to print
during the execution of the software. For example, in Log4j,
there are seven levels (ordered by severity): ALL, DEBUG,
INFO, WARN, ERROR, FATAL, and OFF.

performance decline, security risks, etc. Therefore, developers

should also have specific Concerns regarding logging practice.

Typically, developers should make careful considerations on

both I&C (abbr. for Intentions and Concerns). Therefore, the

developer’s I&C are valuable, even essential, for understanding

and improving logging practice. If we only focus on the two-

W questions (i.e., what to log? and where to log?) and ignore

the developer’s corresponding I&C, it is easy to fall into the

dilemma of “know the hows but not the whys”. To this end, we

carried out this study with the aim to understand developers’

I&C when performing logging practice and more importantly,

we go one step further to investigate how the I&C are properly

reflected in the artifacts (i.e., the source code).

To address this research purpose, we conducted a case

study at XH, a world-leading company on big-data technology.

We collected evidence from two sources, i.e., the interviews

with developers and the real log statements in the source

code they developed, respectively. With mutual comparison

on the two sources of evidence, we attempted to shed light

on the developers’ I&C and identify potential inconsistencies

between the developers’ I&C and the eventual implementation

of the logging practice (i.e., the real log statements in source

code). Results suggest that the developers’ I&C have been

poorly implemented in logging practice, which to a certain

degree confirms the observations and explains the reason as

well in several studies [1], [4]–[6].

12

2020 IEEE International Conference on Software Maintenance and Evolution (ICSME)

2576-3148/20/$31.00 ©2020 IEEE
DOI 10.1109/ICSME46990.2020.00012

Authorized licensed use limited to: Nanjing University. Downloaded on December 11,2020 at 04:02:53 UTC from IEEE Xplore. Restrictions apply.

The main contributions of this study can be highlighted as

follows:

• It focuses on the logging practice in industry and sheds

light on the current state of logging practice adopted in

industry, which is rare in the previous studies.

• It applies a mutual verification on the evidence collected

from two sources (i.e., interview and corresponding real

log statements) and a further confirmation to reveal the

developers’ I&C towards logging practice and whether

the I&C are properly reflected in software source code,

to which current studies paid very limited attention.

• It identifies major inconsistencies between the develop-

ers’ I&C and their implementation in source code, which

not only reveals challenges but also implies improvement

directions.

The rest of this paper is organized as the following. In

Section II, we discuss the related work about logging practice.

Section III introduces our study methodology, including design

and execution. In Section IV, we elaborate the results and

findings. In Section V, we discuss the implication of the find-

ings and possible solutions. Threats to validity are discussed in

Section VI. Finally, conclusions and future work are presented

in Section VII.

II. RELATED WORK

Because the log information has been considered to be

the only means to provide detailed information that captures

the dynamic behavior of the running program [2], [7], [8],

research on logging practice has attracted more and more

attention. Nevertheless, how this practice has been adopted in

the industry is not clear due to the relatively smaller amount

of studies based on the industrial context. In this section, we

introduce some related work about the research on logging

practice.

A. Logging Practice

Around logging practice, there exist several categories of

research work as follows:

Where to log? These studies concern the location that

log statements should be placed. For example, Fu et al.

[4] conducted an empirical study in Microsoft to study the

developers’ logging practice with regard to “where to log”.

Further, for the purpose of facilitating usage, prototype tools

are always raised along with the logging practice approach. For

example, Zhu et al. [8] developed a tool named LogAdvisor
that suggests developers whether they should place a log

statement in a code snippet. Yuan et al. [9] developed Errlog
that adds proactive log statements into source code without

introducing heavy logging overhead. The common idea of

these tools is to provide suggestions on whether to place log

statements in a code snippet by learning or summarizing log

patterns derived from existing log statements in source code.

More specifically, several studies focus on the log-placement

algorithm. For example, Zhao et al. [10] proposed an algorithm

that computes the “best” placement of INFO-log statements

with a pre-defined performance overhead threshold.

What to log? This type of studies usually focuses on

the contents of the log statements. For example, Yuan et

al. [11] presented a tool, LogEnhancer that systematically

enhances every log statement in source code to collect causally

related diagnostic information. Li et al. [12] proposed an

automated approach to help developers determining the most

appropriate logging level when adding a log statement to

the source code. Nevertheless, an empirical study involving

more than 1000 open source GitHub repositories conducted

by OverOps1 implies that most log statements do not contain

any parameter, rendering questionable capability to capture the

runtime behavior of the target software system via logging

practice.

Logging patterns or characteristics. Many studies cover

both aspects (i.e., where to log? and what to log?) around

logging practice. The basic idea is by studying existing log

placement in many projects so that to expect certain logging

patterns or characteristics, which may help developers to do

better logging practice. For example, Yuan et al. [1], [9]

studied the logging practice of open-source software projects

and further proposed proactive logging strategies. Similarly,

other studies such as log change behaviors [1], [13], [14], log

evolution [15], and anti-patterns in log statements [16] also

try to provide reference value for developers when conducting

logging practice.

All the aforementioned studies provide insightful findings

on logging practice from various perspectives. However, there

seems not enough attention has been paid on the I&C of

developers while they carrying out logging practice, given the

fact that most of the log statements are manually written by

the developers. Some studies claimed to investigate “logging

intention” and its value for log placement improvement [17]

and log level recommendation [18]. Nevertheless, the “logging

intention”s in these studies are derived from the researchers‘

perception and conjecture based on the contextual features

of log statements in the source code, which never has been

confirmed by the developers who produced them. In fact,

as study [19] implies, it is not rare that developers may

simply copy log statements and paste them to different code

snippets without any modification. As a result, there are a lot

of duplicated log statements in these projects, which easily

mislead researchers’ perception and conjecture on the real

logging I&C of developers without necessary confirmation

from the person who wrote the log statements. In this study,

we value the importance of the developers’ real I&C for

better logging practice in future development and apply face-

to-face interviews together with source code analysis to collect

evidence to reveal the developers’ real I&C towards logging

practice.

B. Study on Logging Practice in Industry

Studies on logging practice in industrial companies are

relatively rare, compared to the large number of studies using

open source projects. One reason for this phenomenon might

1https://land.overops.com/java-logging-in-production-ebook/

13

Authorized licensed use limited to: Nanjing University. Downloaded on December 11,2020 at 04:02:53 UTC from IEEE Xplore. Restrictions apply.

be that it is much easier to obtain the source code and log

statements in open source projects. Nevertheless, in open-

source projects, it is also relatively difficult to get access

to the developers who wrote the log statements and learn

about their I&C when they put the log statements in the

source code. In industrial companies, the situation is exactly

the opposite. Since it is usually easier to find the developers,

with interviews, their I&C during logging are thus easier to be

acquired, although obtaining source code might be a challenge.

Baccanico et al. [20] interviewed several developers from

different teams in one company, where they developed, inte-

grated and maintained distinct products from a given product

family. It turned out that developers even within a given

product family rarely share rules about message structure and

logging architecture. The authors believed that this was a

common drawback and a known issue for any large-scale de-

velopment. Pecchia et al. [5] also interviewed the developers in

an industrial organization. They observed that the developers

in the same product line share common rules regarding the

implementation of the log statements. Nevertheless, there were

no strict and explicit logging rules across different product

lines. As a result, in this organization, three product lines have

different log structures and different log production mecha-

nisms. Apparently, the I&C of developers are still missing

from these studies. Fu et al. carried out a study containing

code analysis and a questionnaire-based survey at Microsoft

[4] to explore the logging decisions regarding “where to log?”.

Nevertheless, we intend to go one step further to understand

the I&C behind these decisions and possible gaps between the

I&C and actual log placement.

III. RESEARCH METHOD

We value the determinant role of developers’ subjective

opinions (i.e., I&C) in current logging practice. Therefore,

our research attempts to establish proper understanding of

developers’ I&C and the degree to which they were properly

reflected in the log statements in source code in real-world

software development. In this section, we elaborate on our

research method.

A. Background

Our research was conducted at XH, a world-leading IT

company, focusing on enterprise-level cloud computing, big

data, and AI technologies. At present, XH holds approximately

10 enterprise-level products and houses over 600 employees,

among which 20% of employees work in the R&D department.

The considerations are two-fold. First, as studies imply, plat-

form providers tended to rely on logging mechanism for issue

diagnosis [1], [21]. Second, as long as we are also interested

in the status of I&C being reflected in log placement, the

source code in companies with strict regulations on logging

practice(e.g. [22]) may not be able to reflect developers’ I&C
freely in log placement.

In our research, we selected three Java-based projects cov-

ering three major product lines in XH, i.e., storage engine,

computing engine, and middle-ware, respectively. The follow-

ing is a brief introduction to them.

• HD is a flash-based distributed storage engine that en-

sures the performance, stability, and reliability of big data

platforms.

• IC is a high-performance distributed computing engine

for data marts and real-time data warehouse.

• SG is a middle layer software between a general dis-

tributed data service layer and the underlying storage

engine, which further abstracts the underlying storage

engine into a set of interfaces.

The overview information of the three projects is shown in

Table II. The biggest project is IC, which is developed and

maintained by 7 engineers. The IC project contains 133, 132
lines of code, among which there are 1, 402 lines of log

statements.

TABLE II
OVERVIEW OF THE THREE PROJECTS: LINES OF CODE, LINES OF LOG

STATEMENT AND THE NUMBER OF DEVELOPERS

Project Lines Of Code Lines Of Log Statement # Developers
HD 61,567 598 4
IC 133,132 1,402 7
SG 71,345 195 4

B. Research Design

1) Research Questions: To be specific, we describe the goal

of this study using a GQM style [23] as the following:

To investigate and analyze current logging practice (more
specifically, the log placement, which includes both “where to
log?” and “what to log?”)

For the purpose of understanding the developer’s I&C and
identify potential inconsistencies between the I&C and the log
statements in source code

From the perspective of developers’ I&C
In the context of real-world software projects in one big-

data company.
To achieve the research goal, we have defined the following

four research questions:

RQ1: What are the developers’ awareness and understand-
ing of logging practice in this company?

Developers’ awareness and understanding of logging prac-

tice may first have an impact on the practice. For instance,

whether they are aware of the importance of logging? To

what degree developers accept logging practice as a common

task during development? etc. Obviously, without a shared

awareness and understanding of logging practice, we may not

be able to expect proper log placement in the source code.

RQ2: What I&C that developers have when they conducting
the logging practice?

The developers’ I&C are intangible yet extremely critical in

logging practice. The importance of this research question is

that the developers’ I&C are supposed to be reflected in log

14

Authorized licensed use limited to: Nanjing University. Downloaded on December 11,2020 at 04:02:53 UTC from IEEE Xplore. Restrictions apply.

placement. In short, the developers’ I&C drive the logging

practice they carried out, which may provide clues for us to

understand the log placement we identified in the source code.

Meanwhile, it may also provide a comparison basis to identify

possible inconsistencies between what the developers thought

(i.e., their I&C) and what they did (i.e., the real log statements

in source code) with respect to the logging practice, which

leads to the next research question.

RQ3: To what extent the developers’ I&C could be properly
reflected in the source code regarding log placement?

Ideally, the I&C described by the developers should be

consistent with the log placement in the program. However, for

example, compared to the business logic code, log statements

are very easy to be neglected, especially in development

under time pressure. Moreover, the source code might also

change for various reasons (e.g., to fix a defect or add a new

feature), rendering more chances for inconsistency between

the I&C and log placement. In this sense, we define this

research question to understand the status that whether the

log placement is able to reflect developers’ I&C consistently.

RQ4: What should be improved regarding the current adop-
tion status of logging practice?

If current logging practice can not support the developers’

I&C to be properly reflected, we intend to explore improve-

ment opportunities from the perspective of the forefront engi-

neers.

2) Research Process: In order to avoid any distraction,

i.e., we do not want interviewees to explain existing source

code containing log statements, we first perform Interviews,

during which interviewees answer questions without referring

to the actual source code they wrote. Then an independent

Code analysis will be conducted to provide objective evidence

regarding the log placement in the actual source code. By

comparing the results from both sources and a confirmation

interview to discuss the preliminary findings and the reasons

behind in a Result synthesis step, we may be able to under-

stand the status that how the I&C are properly implemented

in source code. Figure 1 depicts the research process of our

study.

Step 1: Interview.
We first prepared a set of questions as shown in Table

III, driven by the research goals and questions. A mapping

between the interview questions and research questions is also

presented in Table III. The questions covered topics such as

the interviewee’s background, current logging practice, and

expectations for better logging practice. Then we conducted a

series of interviews with the developers.

Step 2: Code analysis.
After the interviews, we started source code analysis. Log

statements were extracted with key relevant information (e.g.,

file path, contributor, etc.) from the source code. Through

manual check of each log statement, we intended to collect

contextual features (e.g., the code structure, the parameters in

log statements, etc.) of the code snippet (typically, a method

or major branch of a big method) containing log statements.

Step 3: Result synthesis.
With the results from both the previous steps (i.e., Step

1 and 2), we were able to conduct a mutual verification by

comparing the two sources of evidence, through which we

attempted to examine how the developers’ I&C are reflected

in the real log statements. To increase the credibility of the

results and, more importantly, to explore the reasons behind

the results we obtained, we finally conducted the follow-up

interviews as the confirmation with the interviewees in this

step.

C. Execution

1) Interviews and Data collection: The interview session

was conducted at XH. Two full-time members (one team

leader and one core developer) were invited to participate in

the interviews. As a result, we had six interviewees for the

interview session. To better collect information, we conducted

all the interviews with only one developer at a time. All the

researchers attended these interviews with different roles. One

researcher asked questions and all the other researchers took

the role of recorder and took notes. If necessary, the recorders

can also ask extra questions to obtain more information from

the interviewees. The person who asked questions also acted

as the timekeeper to limit the duration of each interview within

60 minutes. Table IV lists the duration of each interview, which

ranges from 32 minutes to 45 minutes.

2) Tool extraction, manual check, and data collection:
We developed a tool to manage this step, which encapsulates

several shell and git commands (as shown in Code 1) to

generate Git blame files and extract important information

such as the path of source code file, the author, the line number

and original statement of each line of code, etc. To secure

the quality, we manually examined and double-checked the

extracted log statements for subsequent analysis.

1 # generate Git blame files, which contain the path,
↪→ author, line number and original statement of
↪→ each line of code

2 git ls-files | grep -E "\.java$" | sed ’s/\(.*\.\)java$/
↪→ git blame \1java > \1blame/’ | sh

3
4 # use regular expressions to collect log statements
5 find . -name ’*.blame’ | xargs grep -iE \
6 -e ’log[ˆ.]*\.[ˆ.]*(fatal|error|warn|info|debug|

↪→ trace)[ˆ.]*’ \
7 -e ’log[ˆ.]*\.log\((severe|warn|info|config|fine|

↪→ finer|finest)’ \
8 -e ’log[ˆ.]*\.log\(level\.(severe|warn|info|config|

↪→ fine|finer|finest)’

Code 1. Example commands for log statement extraction

3) Evidence analysis and synthesis: With evidence col-

lected from two different sources (i.e., interview and code

analysis), it is possible to mutually compare and verify the evi-

dence and identify whether there exists inconsistency between

two different sources of evidence, in other words, whether

what they did was consistent with what they said. We did

this with pairs of researchers so as to avoid omission and

misconception of the above-mentioned inconsistency. Since

most questions in Table III are open questions, resulting

in massive irrelevant information in the notes researchers

15

Authorized licensed use limited to: Nanjing University. Downloaded on December 11,2020 at 04:02:53 UTC from IEEE Xplore. Restrictions apply.

�������	�
���	
���	�� �	��	���

�������

��������������	�

����
�	���

�
���
��	��

����
�	���

������	��
������������	��

����� �

����
�	�� ����
�	�������

!�������
���	�� ������������	��"����������#

�����$�

����������	� %�����	������

�����
��������
�����
���

&����	���

'������

%��	�	�������

����
���	�������

Fig. 1. The Process of This Research

TABLE III
THE INTERVIEW SCRIPT USED IN THIS STUDY

Section Interview Questions Question Content To Answer RQ(s)
Background IVQ1 How many years of working experience do you have as a developer? RQ1

IVQ2 How many years have you been working in current company? RQ1
IVQ3 Do you use logging tools? Which logging tools have you ever used? RQ1
IVQ4 What kind of development activities have you ever participated in related to logging practice? RQ1

Current Practice IVQ5 Usually, why do you insert log statements in the source code you wrote? RQ2
IVQ6 Where do you usually add log statements in the source code you wrote? RQ2
IVQ7 Do you have any concerns when you inserting log statements? RQ2
IVQ8 Is there any overhead you would concern when putting log statements? RQ2
IVQ9 Continue with IVQ8, what types of overhead you usually care about in logging practice? RQ2
IVQ10 To what degree, your logging intentions could be supported by current logging practice? and why? RQ3
IVQ11 Is there any guidelines supporting your current logging practice? RQ4
IVQ12 Do you and how often do you modify your log statements? RQ4
IVQ13 Can you introduce us some reasons or examples that you have to modify your log statements? RQ4
IVQ14 Usually, do you consider modifying the log statements when the corresponding business code changed? RQ4
IVQ15 Given the current status of logging practice in your project, what difficulties or challenges have you

encountered in current logging practice?
RQ4

IVQ16 Regarding the logging tools you adopted in your projects, what are the major problems or limitations? RQ4

Improvement
Expectations

IVQ17 Do you think logging guidelines will be helpful? and what kind of the information should be contained in
the logging guidelines?

RQ1/RQ4

IVQ18 What kind of logging tools do you think will be helpful? For example, what features should be included? RQ1/RQ4
IVQ19 What do you think need to or must be improved in current logging practice? RQ4

TABLE IV
INTERVIEW DURATION

HD1 HD2 IC1 IC2 SG1 SG2
Duration (min) 41 35 36 43 45 32

recorded. To maintain focus on relevant information, we also

devised several questions to guide us throughout the evidence

consolidation and analysis.

(1) What are the typical places (both oral evidence and
artifact-based evidence) where developers tend to put log
statements?

(2) Did the developers put log statements at typical places as
they said?

(3) Did the developers put log statements at places where they
claimed not necessary?

(4) Did the developers write log statements with suitable log
levels?

(5) Did the developers write log statements for the purpose
of performance diagnosis? etc.

4) Confirmation interview: Based on the results from the

above analysis, we identified several types of log-prone code

snippets (see Table VII). We then collected code snippets

that were added or modified within the last month, with

the consideration that the developers may still have a good

memory of code snippets so that they still remember their I&C
to the log statements. We still interviewed one developer at a

time. For each interview, we discussed the reason behind each

code snippet regarding logging practice, no matter whether

there exists a log statement or not. The confirmation interviews

provide valuable information for us to better understand the

developers’ I&C and the inconsistencies between the develop-

ers’ I&C and actual log placement.

IV. RESULTS & FINDINGS

We discuss results and findings in this section.

A. RQ1: Developers’ awareness and understanding

Table V presents the background of our interviewees. Al-

though the interviewees have various development experience

and work experience in XH, their participation in activities

around logging practice is similar, as all the interviewees have

ever “used logging tools”, “configured logging tools” (e.g., to

write log4j.properties) and “performed log analysis”. In fact,

this is also reflected in the answers to IVQ3, as they all have

experience in using logging frameworks and tools such as

Log4j and Slf4j. Besides, two interviewees (i.e., HD1 and IC1)

with relatively more development experience even “designed

16

Authorized licensed use limited to: Nanjing University. Downloaded on December 11,2020 at 04:02:53 UTC from IEEE Xplore. Restrictions apply.

TABLE V
BACKGROUND OF THE INTERVIEWEES

Interviewee Participation in Activities Around Logging Practice
Using
logging tools

Configuring
logging tools

Designing logg
-ing interfaces

Performing
log analysis

HD1(8,4)* � � � �
HD2(4,2) � � - �
IC1(10,4) � � � �
IC2(5,2) � � - �
SG1(8,4) � � - �
SG2(3,2) � � - �

* HD1(8,4) means the first interviewee from project HD has 8 years of experience on
software development and 4 years of experience on current job, and so on.

TABLE VI
INTERVIEWEES’ MOST MENTIONED I&C TOWARDS LOGGING PRACTICE

Answer
Interviewee HD1 HD2 IC1 IC2 SG1 SG2

Intentions
Error debugging � � � � � �
System behavior understanding � � � � - -
Performance diagnosis - - � � - -

Concerned Overhead
I/O � � � � � �
Memory � � � � � �
CPU - - � � - -
Storage - - � � - -

logging interfaces”. For example, sometimes existing logging

frameworks and tools could not satisfy the advanced logging

requirements (e.g., logging performance info on a sequence of

business functionalities) during project development. In this

case, sophisticated developers would design a project-specific

logging interface to make restrictions on the log statements

through a set of logging rules, as well as facilitate common

usage of existing logging frameworks and tools.

While talking about logging, the interviewees also shared

opinions like “Logging is very helpful for failure diagnosis. It
is now an integral part of my daily development work.” and

“I have different concerns when writing log statements, since
I think that logging varies in different places and different
situations.” during the interviews, which also to a certain

degree reflect that logging practice is a common part in daily

development for the interviewees.

Finding 1: We have not observed developers with no expe-

rience on logging practice, which to a certain degree implies

the practice is a common task in software development

in XH. Meanwhile, current logging tools may not support

some advanced logging requirements well for sophisticated

developers.

B. RQ2: Developers’ I&C

Through IVQ5, we tried to obtain the interviewees’ In-
tentions to put log statements in source code. As shown

in Table VI, the interviewees mentioned “error debugging”,

“system behavior understanding” and “performance diagnosis”

as the logging intentions. A noteworthy point is that only the

interviewees from project IC mentioned to write log statements

for “performance diagnosis”, which can be verified in the

source code for this project.

TABLE VII
CODE SNIPPETS TO PUT LOG STATEMENTS

Code Snippet & Elaboration Interviewees Mentioned
Exception Handling
Developers put log statements in an exception handling
block (e.g., try-catch block) to record exceptions, i.e.,
the abnormal behavior of the program.

HD1, HD2, IC1,
IC2, SG1, SG2

Condition Check
Developers put log statements in a condition check
block (e.g., if-else block) to capture different program
behaviors under different conditions.

HD1, HD2, IC1,
IC2, SG1, SG2

Interface Invocation
Developers put log statements right after an interface
invocation to make sure that the interface invocation
returns the right result.

HD1, HD2, IC1,
IC2

Hotspot
Developers put log statements in the code snippets that
are “believed to be” error-prone due to complex logic
or that own key responsibilities for business (which
we called hotspot) to improve the maintainability of
the system.

HD1, HD2, IC1,
IC2, SG1, SG2

Moreover, while we were synthesizing the interviewees’

answers to IVQ6 (as shown in Table VII), we noticed that

different Intentions may lead to different places where devel-

opers put log statements. This result was verified in the source

code analysis. For example, log statements with the intention

of “error debugging” can usually be found in “exception

handling” or “condition check” code snippets with parameters

to record the values of certain variables. Meanwhile, log

statements with the intention for “performance diagnosis” are

usually put in some “hotspot” code snippets, recording the

execution times of certain functions.

Logging costs resources, therefore, developers need to seek

a balance between the cost and benefit, in short, the Concerns.

We summarize three major concerns mentioned by the inter-

viewees as the following.

Log content. The interviewees believed that the information

being captured (i.e., log content such as parameters) through

logging was one of the most considered when they wrote the

log statements.

Log level. What is a proper log level for a particular log

statement in a specific code snippet is one of the most men-

tioned concerns. Moreover, determining a suitable log level

is also the most common difficulty faced by the interviewees

(ref. Section IV-D).

Log overhead. As shown in Table VI, most interviewees

mentioned the overhead of logging as one of the major

concerns, with “I/O” and “memory” being the most mentioned.

Two interviewees (i.e., IC1 and IC2) also mentioned two more

types of overhead: “CPU” and “storage”. We believe that

different project characteristics (type, objective, etc.) may lead

to different concerns on the log overhead from developers. For

example, project IC is a high-performance computing engine,

so the logging should be conducted with cautions on nearly

all aspects related to the system performance, given the fact

that “not logging, no extra cost”.

Finding 2: Project characteristics (e.g., whether performance

is critical) may impact the developers’ I&C, leading to

17

Authorized licensed use limited to: Nanjing University. Downloaded on December 11,2020 at 04:02:53 UTC from IEEE Xplore. Restrictions apply.

different log placement potentially. Nevertheless, developers

in different projects may still share some I&C in common.

C. RQ3: Log placement to reflect developers’ I&C

Since we only attempt to uncover the potential gap between

the I&C and the artifacts, we only involve one typical incon-

sistency in our study, i.e., the source code snippet with absent

log statement that the owner (interviewee) claimed to have. In

fact, this is also one of the most occurred issues on logging

practice, as studies [6], [11], [24] indicated.

Code 2 shows an example of “absent logging” inconsistency.

According to Table VII, both “condition check” and “interface

invocation” should contain log statements since these places

are error-prone places due to various unexpected reasons. Line
3 is a “condition check” and there does exist a log statement

at line 4, whereas there is no log statement after the “interface

invocation” at line 9. Therefore, Code 2 is taken as one

inconsistency.

1 public void storeFile(File file) {
2 ...
3 if (!file.exists()) {
4 logger.error("File do not exists!");
5 ...
6 }
7 ...
8 UUID uuid = UUID.randomUUID().toString().replace("-",

↪→ "");
9 Path storagePath = StorageService.generateStoragePath

↪→ (file, uuid);
10 Files.copy(file, path, StandardCopyOption.ATOMIC_MOVE

↪→);
11 ...
12 }

Code 2. An example of an “absent logging” inconsistency

1 public void create(Handler handler, Table table) {
2 ...
3 try {
4 ...
5 res = checkFS();
6 if (!res.isValid()) {
7 ...
8 // It should be logged since it is a "condition

↪→ check"
9 // However, it is already logged by the catch

↪→ block
10 throw new CreateTableException(res.msg);
11 }
12 handler.createTable(table, params);
13 ...
14 } catch (CreateTableException e) {
15 ...
16 logger.error(e.msg, table.schemaName, table.

↪→ tableName);
17 metastore.rollback(table);
18 } ...
19 } catch (Exception e) {
20 ...
21 }
22 }

Code 3. An example of a reasonable “absent logging” code snippet

A noteworthy point is that there exist some exceptional

cases. Take Code 3 as an example, there is no log statement

after the “condition check” at line 6. Nevertheless, an excep-

tion is thrown out and then handled by the catch block at lines
14-18, where there has a log statement. Thus the absence of

the log statement at lines 8-10 is reasonable, otherwise the

TABLE VIII
REFLECTION OF I&C IN PROJECTS

Project Interviewee
Code Snippets

With Absent
Log Statements

Code Snippets
Should Contain
Log Statements

Percentage

HD HD1 14 34 41.18%
HD2 11 25 44.00%

IC IC1 23 42 54.76%
IC2 26 44 59.10%

SG SG1 1 7 14.29%
SG2 1 5 20.00%

log statement would be redundant. This example shows the

necessity that two sources of evidence are required to identify

an inconsistency of “absent logging”, which also implies

exactly a major challenge to establish a practical guideline for

logging practice, i.e., the similar context may lead to different

decisions on log placement.

Table VIII portrays the reflection status of developers’ I&C
in the three projects respectively. Apparently, most intervie-

wees fail to put a log statement at every place where they

claimed that there should have. For project HD and IC, a

noticeably large part of I&C (more than 40%) cannot be

reflected in the code. However, project SG presents a better

status with less than 20% missing logging places. Still, we

believe the characteristics of the projects are the reason for

this phenomenon.

In the follow-up interview, the inconsistencies have been

confirmed and typical root causes for such inconsistencies have

been revealed.

Firstly, due to the negligence or carelessness, developers just

forgot to insert a log statement at the code snippet where they

intended to. This phenomenon reflects a problem regarding

logging practices that developers normally are not able to

focus on logging practice when coping with source code

implementing business logic.

1 public void spill() {
2 ...
3 // try {
4 // // check if the server is available.
5 // server.checkAvailable(servername, mode);
6 // ...
7 // } catch (Exception e) {
8 // logger.error("Server cannot be accessed, due to:

↪→ ", e);
9 // server.recover();

10 // }
11 isAvailable = server.checkAvailable(servername, mode)

↪→ ;
12 if (isAvailable) {
13 server.addConfig(configuration);
14 server.spill();
15 ...
16 } else {
17 // a log statement should be inserted into this

↪→ place.
18 server.recover();
19 }
20 }

Code 4. An example of a deleted log statement

Secondly, evidence collected from the answers to IVQ12,

IVQ13 and IVQ14 implies that due to various reasons, e.g.,

new features, interface changes, mistakes, low performance,

and business logic changes as well, code modification is

18

Authorized licensed use limited to: Nanjing University. Downloaded on December 11,2020 at 04:02:53 UTC from IEEE Xplore. Restrictions apply.

inevitable in daily software development. Nevertheless, log

statements are usually neglected in these types of modifica-

tions. Thus log statements may be deleted due to changes to

source code. Take Code 4 as an example, the original log

statement was deleted since the “checkAvailable” interface

was changed (from throwing an exception to return a flag).

However, after the code changed, no log statement was added

into the “else” block to record the state when the server was

unavailable.

Finding 3: Developers’ I&C have not been properly reflected

in the source code for different reasons. Exceptional cases

exist when a code snippet which seemingly should contain

log statements does not actually need to.

D. RQ4: Improvement Opportunities

Evidence from the answers to IVQ15 and IVQ16 may help

us scratch the surface to understand the major challenges and

difficulties that developers may encounter when conducting

logging practice. We summarize the challenges and difficulties

as follows.

Lack of prompt message regarding log placement. Most

interviewees mentioned that sometimes they just missed some

important log statements in the source code. One reason for

this phenomenon is that the business logic of the source

code always attracts the most attention during coding. In this

sense, if the IDE or other logging tools could scan the source

code and show alerts at the places where there should be

log statements, the issue of missing log statements may be

addressed to a large degree.

Lack of necessary guidance. Some developers mentioned

that the lack of reference guidelines is the reason for relatively

poor implementation in the logging practice. Without useful

guidelines, log placement is a challenge for them, rendering

arbitrary log placement in practice. However, as presented in

Table IX, some interviewees do not agree with this viewpoint.

To address the above challenges, some improvement actions

have been raised and comprehensively discussed during the

interviews. Among them, supporting tools and logging guide-

lines have been mentioned nearly by all the interviewees.

Tools. Regarding the current logging tools that our intervie-

wees are using, the interviewees mentioned that current tools

which only provide a framework to write log statements and

leave most decisions on log placement to developers should be

enhanced. For example, to provide recommendations around

log-prone code snippets, to provide message prompt if log

statements are missing from critical log-prone code snippets,

etc. Nevertheless, the interviewees also expressed their doubts

about such “powerful” logging tools–perhaps just too complex

to be realized.

Guidelines. In fact, guidelines regarding logging practice

triggered heat discussion. As Table IX shows, on one hand,

since none of our interviewees have guidelines currently, most

interviewees anchor their hope on effective guidelines. On the

other, some interviewees also expressed their concerns about

TABLE IX
INTERVIEWEES’ ATTITUDES ON LOGGING GUIDELINES

Interviewee Attitude
HD1 Positive. It is good to have general guidelines.
HD2 Positive. Guidelines are necessary for newcomers.
IC1 Negative. Most guidelines can not be applied in current projects.
IC2 Negative. Guidelines are hard to define and usually useless.
SG1 Positive. Guidelines help to avoid injection of log related issues.
SG2 Positive. Guidelines are necessary for newcomers.

the effectiveness of guidelines. They think such guidelines may

be unnecessary and useless.

Finding 4: Developers resort to enhanced supporting tools

and logging guidelines to improve current logging practice.

However, they have divergent viewpoints towards the effec-

tiveness and feasibility of these methods.

V. DISCUSSION

In this section, we discuss the implication of our findings

and possible solutions as well.

A. The Importance of Logging Practice and Developers’ Per-
ception

As an important part of operation data produced by logging

techniques, logs are playing a more and more important role

in modern software development. For example, as a new

software development and operations paradigm, DevOps [3],

[25] and AIOps [26] are attracting more and more attention

from practitioners. To monitor either a large software system

or many microservices, high-quality logs are critical which

requires high-quality logging practice. This study reveals one

fact that logging is pervasively used in software development

and maintenance in XH. Nearly all the developers know

logging practice and have more or less experience in logging

practice. Besides, different logging tools as one of the daily

development facilities have been widely adopted.

Developers are aware of the importance and value of logging

practice, as one developer mentioned that “Logs, in most cases,

are the only available data for us to diagnose failures, so we

have to insert log statements in our code.” This statement

is consistent with some opinions from other researchers that

logging is one of the few mechanisms for gaining visibility of

the behavior of the software system [2], [7], [8], [27]. Zhu et

al. [8] also pointed out that the pervasive existence and active

modifications of log statements reveal that logging plays an

indispensable role in software development and maintenance.

B. Inconsistencies between Developers’ I&C and Real Log
Placement

The results of our study imply that developers’ I&C are

often not properly reflected in the source code, i.e., there

are inconsistencies between the original I&C and the real

implementation in source code. Besides, source code may be

modified for many reasons, which further increases the oppor-

tunities for the aforementioned inconsistencies. Developers are

facing several challenges when carrying out logging practice,

19

Authorized licensed use limited to: Nanjing University. Downloaded on December 11,2020 at 04:02:53 UTC from IEEE Xplore. Restrictions apply.

among which “where to log?” and “what to log?” are still two

major unsolved challenges, not to mention a proper reflection

of developers’ I&C.

Several studies attempted to address these challenges. For

example, He et al. [28] focused on the natural language

descriptions of log statements for the sake of filling in the

gap of “what to log?”. Zhao et al. [2] proposed a tool that

can automatically place log statements into source code. Li

et al. [12] proposed an approach to help developers deter-

mine the appropriate log level, and so on. Apparently, these

“bottom-up” efforts may not be able to totally eliminate the

inconsistencies between developers’ I&C and log statements in

source code, since there lacks a comprehensive and systematic

perspective towards log placement. Researchers also tried a

“top-down” strategy to improve the logging practice. For

example, Lal et al. [29] suggested that log statements have

a trade-off between cost and benefit and it is important to

optimize the number of log statements in the source code.

Nevertheless, this strategy also faces challenges, as pointed out

by Fu et al. [4] that optimizing log statements in the source

code is a non-trivial task, and software developers often face

difficulty in it.

C. Guidelines for General-Purpose Logging

Logging guidelines seem to be a useful solution. With

recognizing the importance of guidelines for logging practice,

a number of studies attempted to propose the best practices

for logging. Cinque et al. [30] proposed a set of rules to

enrich traditional logging for the sake of improving the quality

of logged failures and easing the coalescence of redundant

or equivalent data. Fu et al. [4] categorized logged code

snippets and summarized factors need to be considered for

logging decisions. Some studies also propose guidelines for

logging practice as future work. Cinque et al. [31] planned

to encompass the definition of a wider set of guidelines to

improve the suitability of logs for the analysis of software

faults. There are also several blogs discussing the best or

worst logging practices, e.g., [32], [33]. Some world-leading

software companies have also introduced internal guidelines

for logging practice, e.g., Alibaba [22]. Most of them focused

on logging practice for general purpose, i.e., logging without

any specific I&C under a specific context.

However, in our opinion, effective guidelines for general-

purpose logging might not exist. From the perspective of

software developers, logging is an approach that providing

informative data for subsequent diagnosis or analysis. These

analysis objectives can be divided into several different cat-

egories, e.g., performance diagnosis, system profiling, etc.

Different analysis techniques and purposes require different

types of information. In this sense, the goal to design general-

purpose logging guidelines might not be practical and feasible,

which to a certain degree explains the conflicting attitudes

on the usefulness of logging guidelines among interviewees.

Moreover, as Finding 3 implies, the situation of exceptional

cases obviously increases the difficulty (if not impossible) to

establish a suitable guideline.

As revealed in our study and reflected in internal coding

guidelines such as [22], it seems that “general-purpose” guide-

lines can only address simple issues such as naming, on-off

switch for log level, etc. which may only help newcomers.

D. Shift-Left of Logging Practice

Current research primarily focuses on the improvement of

existing log statements from mainly two aspects, where to
log? and what to log?. However, coping with source code

to address business logic easily attracts developers’ attention

and impede developers from forming systematic perspectives

towards log placement. In this sense, logging practice should

be considered to be shifted left to upstream development

phases such as design and requirement where developers may

have a better position to think about the overall log placement

systematically.

In fact, some researchers already have noticed this topic. For

example, Cinque et al. [30] proposed a set of rules to enrich

traditional logging. Similarly, the authors advocated that the

proposed rules should be followed at design time. In short, the

implementation of logging should be designed along with the

system design.

VI. THREAT TO VALIDITY

In this section, we present and discuss the validity threats

for this study.

A. Construct Validity

Construct validity reflects the degree to which the measures

and evidence in the study accurately represent the research in-

tention. The following issues associated with construct validity

have been identified:

a) Only examining the unlogged code snippet for con-
sistency checking: When comparing the I&C and the source

code, we only involved the “absent logging” inconsistency, i.e.,

an unlogged code snippet which should have log statement is

determined as inconsistency. However, the opposite situation,

i.e., a logged code snippet containing unnecessary log state-

ments is not determined as an inconsistency. Nevertheless, this

setting only decreases the number of inconsistencies, which

may not impact our conclusion given the fact that plenty of

inconsistent cases of “absent logging” have been identified.

b) Only verifying the occurrence of log statements: We

only verify whether a log statement exists in the code snippet

as the corresponding developer described without examining

the content of the log statement. Apparently, the I&C of

the developer means far more than the occurrence of a log

statement in a specific snippet. By involving this factor will

inevitably increase the number of inconsistencies between I&C
and log placement. In this sense, the findings still hold true.

c) Only involving the unlogged code snippets near logged
ones: The tool and commands used to locate code snippets

for further manual checks are based on the precondition that

there should exist at least one log statement in the code

snippet. In this sense, those code snippets without any log

statement (no matter there should be or not) are excluded in

20

Authorized licensed use limited to: Nanjing University. Downloaded on December 11,2020 at 04:02:53 UTC from IEEE Xplore. Restrictions apply.

our study. Similarly, this choice will only decrease the number

of inconsistencies and will not impact our conclusion in this

paper also.

B. Internal Validity

Internal validity is the extent to which a study establishes a

trustworthy cause-and-effect relationship between a treatment

and an outcome. The following issues associated with internal

validity have been identified:

a) The relatively small number of interviewees: Another

threat to the validity is that we only involved 6 interviewees

from three projects in our study. Therefore, results and findings

in this study may not reflect all the real status regarding

logging practice in XH. However, we involved one-third of the

core projects in XH in our study. Besides, the interviewees all

have multiple years of working experience in this company,

including all the team leaders in these three projects. This

setting provides a credible source of information. Meanwhile,

we focus on the difference between various evidence sources

in this study. In this sense, this threat could be largely

mitigated.

C. External Validity

External validity reflects the degree to which we can gen-

eralize the results to other contexts. The following issues

associated with external validity have been identified:

a) Java as the sole programming language: One possible

threat to the external validity might be that we only in-

volved the projects developed with Java language. Developers’

I&C towards logging practice may differ when using other

programming languages. For example, different programming

languages may have different mechanisms to manage memory,

which may require different ways to write and put log state-

ments for performance diagnosis. Nevertheless, Java is one of

the most adopted programming languages in many companies.

In this sense, our results towards developers’ I&C in industry

can be valuable.

b) Big-data company as the only business type: Another

possible external validity can be that we only observed de-

velopers in one big data company. Developers in different

companies in other business domains may have different I&C
towards logging practice and thus the inconsistencies between

the I&C and the log statements may also differ to a certain

degree. In this sense, it is important to carry out similar studies

with different types of companies so that we can deepen our

understanding of logging practice.

VII. CONCLUSION

With the continuous increasing scale and complexity of

software systems, understanding the dynamic behavior of

software systems via logs is critical in many software practices

such as debugging, performance-optimizing, etc. Logs are

footprints of the running software systems, which are produced

by the log statements written by developers. Apparently, the

log statements are supposed to reflect developers’ I&C to put

them in various places in software source code. However,

although there are plenty of studies on logging practice, very

little research work focused on the developers’ I&C behind

each log statement.

We carried out a case study that includes a series of

interviews and corresponding code analysis at XH company to

understand the developers’ I&C and further identify possible

inconsistencies between the I&C and real log statements. As

one single case study, we do not intend to generalize findings.

Nevertheless, some interesting facts and implications based on

our findings can be summarized as the following:

First, as a regular and daily activity in software develop-

ment, logging practice gained widespread awareness among

developers. Tools and guidelines are used to address simple

issues regarding logging practice, which may not help sophis-

ticated developers.

Second, by focusing on developers’ I&C behind each log

statement, we provided one possible explanation for the non-

ideal adoption status. Due to various reasons, for example,

lacking supporting facilities or the version evolution of source

code, the developers’ I&C are usually poorly reflected in

the source code, rendering questionable capability to capture

intended information about system behaviors via logs.

Last but not least, the divergent attitudes on the effectiveness

and feasibility of logging tools and guidelines imply that to

reflect the I&C of developers in log placement might not be an

easy problem to solve. As a matter of fact, tools and guidelines

are not new ideas, but to the best of our knowledge, they

also have very limited effects to improve the logging practice

in industry. In this sense, research attention may be needed

to explore new mechanisms and approaches to represent

I&C and guide, verify and monitor their implementation in

log placement. At this preliminary stage, we suggest several

promising research directions as follows:

(1) A large-scale empirical study that focuses on develop-

ers’ I&C towards logging practice in different companies

across different business domains, which may help us es-

tablish a more complete and comprehensive understanding

of the adoption status of logging practice as well as the

developers’ I&C in industry.

(2) Taking the content of log statements into account in the

mutual comparison of I&C and log statements to better

identify the inconsistencies.

(3) To explore approaches to include, reflect and manage the

developers’ I&C in the source code.

ACKNOWLEDGMENT

This work is partially supported by the National

Key Research and Development Program of China (No.

2019YFE0105500).

REFERENCES

[1] D. Yuan, S. Park, and Y. Zhou, “Characterizing logging practices
in open-source software,” in Proceedings of the 34th International
Conference on Software Engineering (ICSE ’12). IEEE Press, Jun.
2012, pp. 102–112.

21

Authorized licensed use limited to: Nanjing University. Downloaded on December 11,2020 at 04:02:53 UTC from IEEE Xplore. Restrictions apply.

[2] X. Zhao, K. Rodrigues, Y. Luo, M. Stumm, D. Yuan, and Y. Zhou,
“Log20: Fully automated optimal placement of log printing statements
under specified overhead threshold,” in Proceedings of the 26th Sympo-
sium on Operating Systems Principles (SOSP ’17). ACM, Oct. 2017,
pp. 565–581.

[3] G. Rong, S. Gu, H. Zhang, D. Shao, and WanggenLiu, “How is logging
practice implemented in open source software projects? a preliminary
exploration,” in Proceedings of the 25th Australasian Software Engi-
neering Conference (ASWEC ’18). IEEE, Nov. 2018, pp. 171–180.

[4] Q. Fu, J. Zhu, W. Hu, J.-G. Lou, R. Ding, Q. Lin, D. Zhang, and T. Xie,
“Where do developers log? an empirical study on logging practices in
industry,” in Companion Proceedings of the 36th International Confer-
ence on Software Engineering (ICSE Companion ’14). ACM, Jun.
2014, pp. 24–33.

[5] A. Pecchia, M. Cinque, G. Carrozza, and D. Cotroneo, “Industry
practices and event logging: Assessment of a critical software devel-
opment process,” in Proceedings of the 37th International Conference
on Software Engineering-Volume 2 (ICSE ’15). IEEE Press, May 2015,
pp. 169–178.

[6] W. Shang, M. Nagappan, A. E. Hassan, and Z. M. Jiang, “Understanding
log lines using development knowledge,” in Proceedings of International
Conference on Software Maintenance and Evolution (ICSME ’14).
IEEE, Sep. 2014, pp. 21–30.

[7] R. Ding, H. Zhou, J.-G. Lou, H. Zhang, Q. Lin, Q. Fu, D. Zhang, and
T. Xie, “Log2: A cost-aware logging mechanism for performance diag-
nosis,” in USENIX Annual Technical Conference. USENIX Association,
Jul. 2015, pp. 139–150.

[8] J. Zhu, P. He, Q. Fu, H. Zhang, M. R. Lyu, and D. Zhang, “Learning
to log: Helping developers make informed logging decisions,” in Pro-
ceedings of the 37th International Conference on Software Engineering-
Volume 1 (ICSE ’15). IEEE Press, May 2015, pp. 415–425.

[9] D. Yuan, S. Park, P. Huang, Y. Liu, M. M.-J. Lee, X. Tang, Y. Zhou, and
S. Savage, “Be conservative: Enhancing failure diagnosis with proactive
logging,” in Presented as part of the 10th USENIX Symposium on
Operating Systems Design and Implementation (OSDI ’12), Oct. 2012,
pp. 293–306.

[10] X. Zhao, K. Rodrigues, Y. Luo, M. Stumm, D. Yuan, and Y. Zhou, “The
game of twenty questions: Do you know where to log?” in Proceedings
of the 16th Workshop on Hot Topics in Operating Systems (HotOS ’17).
ACM, May 2017, pp. 125–131.

[11] D. Yuan, J. Zheng, S. Park, Y. Zhou, and S. Savage, “Improving software
diagnosability via log enhancement,” ACM Transactions on Computer
Systems (TOCS), vol. 30, no. 1, p. 4, Feb. 2012.

[12] H. Li, W. Shang, and A. E. Hassan, “Which log level should developers
choose for a new logging statement?” Empirical Software Engineering,
vol. 22, no. 4, pp. 1684–1716, Aug. 2017.

[13] S. Kabinna, C.-P. Bezemer, W. Shang, M. D. Syer, and A. E. Hassan,
“Examining the stability of logging statements,” Empirical Software
Engineering, vol. 23, no. 1, pp. 290–333, Feb. 2018.

[14] H. Li, W. Shang, Y. Zou, and A. E. Hassan, “Towards just-in-time
suggestions for log changes,” Empirical Software Engineering, vol. 22,
no. 4, pp. 1831–1865, Aug. 2017.

[15] W. Shang, Z. M. Jiang, B. Adams, A. E. Hassan, M. W. Godfrey,
M. Nasser, and P. Flora, “An exploratory study of the evolution of com-
municated information about the execution of large software systems,”
Journal of Software: Evolution and Process, vol. 26, no. 1, pp. 3–26,
2014.

[16] B. Chen and Z. M. J. Jiang, “Characterizing and detecting anti-patterns
in the logging code,” in Proceedings of the 39th International Confer-
ence on Software Engineering (ICSE ’17). IEEE Press, May 2017, pp.
71–81.

[17] Z. Jia, S. Li, X. Liu, X. Liao, and Y. Liu, “SMARTLOG: Place error
log statement by deep understanding of log intention,” in Proceedings
of the 25th International Conference on Software Analysis, Evolution
and Reengineering (SANER ’18). IEEE, Apr. 2018, pp. 61–71.

[18] H. Anu, J. Chen, W. Shi, J. Hou, B. Liang, and B. Qin, “An approach
to recommendation of verbosity log levels based on logging intention,”
in 2019 IEEE International Conference on Software Maintenance and
Evolution (ICSME). IEEE, pp. 125–134.

[19] Z. Li, T.-H. Chen, J. Yang, and W. Shang, “Dlfinder: Characterizing
and detecting duplicate logging code smells,” in 2019 IEEE/ACM 41st
International Conference on Software Engineering (ICSE). IEEE, 2019,
pp. 152–163.

[20] F. Baccanico, G. Carrozza, M. Cinque, D. Cotroneo, A. Pecchia, and
A. Savignano, “Event logging in an industrial development process:
Practices and reengineering challenges,” in Proceedings of 2014 IEEE
International Symposium on Software Reliability Engineering Workshops
(ISSREW ’14). IEEE, Nov. 2014, pp. 10–13.

[21] J. Boulon, A. Konwinski, R. Qi, A. Rabkin, E. Yang, and M. Yang,
“Chukwa: A large-scale monitoring system,” in Proceedings of CCA,
vol. 8, 2008, pp. 1–5.

[22] Alibaba, “Alibaba Java coding guidelines,”
https://alibaba.github.io/Alibaba-Java-Coding-Guidelines/, accessed:
2019-12-08.

[23] V. R. Basili, G. Caldiera, and H. D. Rombach, “Goal, question metric
paradigm. encyclopedia of software engineering, vol. 1,” 1994.

[24] M. Cinque, D. Cotroneo, and A. Pecchia, “Event logs for the analysis
of software failures: A rule-based approach,” IEEE Transactions on
Software Engineering, vol. 39, no. 6, pp. 806–821, 2012.

[25] H. Akshaya, J. Vidya, and K. Veena, “A basic introduction to devops
tools,” International Journal of Computer Science & Information Tech-
nologies, vol. 6, no. 3, pp. 05–06, 2015.

[26] Broadcom, “The definitive guide to aiops,”
https://docs.broadcom.com/docs/the-definitive-guide-to-aiops, accessed:
2019-12-08.

[27] A. Oliner and J. Stearley, “What supercomputers say: A study of five
system logs,” in 37th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN’07). IEEE, 2007, pp. 575–
584.

[28] P. He, Z. Chen, S. He, and M. R. Lyu, “Characterizing the natural
language descriptions in software logging statements,” in Proceedings
of the 33rd ACM/IEEE International Conference on Automated Software
Engineering (ASE ’18). ACM, Sep. 2018, pp. 178–189.

[29] S. Lal, N. Sardana, and A. Sureka, “Analysis and prediction of log
statement in open source Java projects,” Buenos Aires, Argentina, p. 65,
May 2017.

[30] M. Cinque, D. Cotroneo, and A. Pecchia, “A logging approach for
effective dependability evaluation of complex systems,” in Proceedings
of the Second International Conference on Dependability (DEPEND
’09). IEEE, Jun. 2009, pp. 105–110.

[31] M. Cinque, D. Cotroneo, R. Natella, and A. Pecchia, “Assessing and
improving the effectiveness of logs for the analysis of software faults,”
in Proceedings of 2010 IEEE/IFIP International Conference on Depend-
able Systems & Networks (DSN ’10). IEEE, Jun. 2010, pp. 457–466.

[32] L. Tal, “9 logging best practices based on hands-on experience,”
https://www.loomsystems.com/blog/single-post/2017/01/26/9-logging-
best-practices-based-on-hands-on-experience, Jan. 2017, accessed:
2019-12-08.

[33] J. Skowronski, “30 best practices for logging at scale,”
https://www.loggly.com/blog/30-best-practices-logging-scale/, Jan.
2017, accessed: 2019-12-08.

22

Authorized licensed use limited to: Nanjing University. Downloaded on December 11,2020 at 04:02:53 UTC from IEEE Xplore. Restrictions apply.

