
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2022.3166924, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14, NO. 8, JANUARY 2021 1

Logging Practices in Software Engineering: A
Systematic Mapping Study
Shenghui Gu, Guoping Rong, He Zhang, and Haifeng Shen

Abstract—Background: Logging practices provide the ability to record valuable runtime information of software systems to support
operations tasks such as service monitoring and troubleshooting. However, current logging practices face common challenges. On the
one hand, although the importance of logging practices has been broadly recognized, most of them are still conducted in an arbitrary
or ad-hoc manner, ending up with questionable or inadequate support to perform these tasks. On the other hand, considerable
research effort has been carried out on logging practices, however, few of the proposed techniques or methods have been widely
adopted in industry. Objective: This study aims to establish a comprehensive understanding of the research state of logging practices,
with a focus on unveiling possible problems and gaps which further shed light on the potential future research directions. Method: We
carried out a systematic mapping study on logging practices with 56 primary studies. Results: This study provides a holistic report of
the existing research on logging practices by systematically synthesizing and analyzing the focus and inter-relationship of the existing
research in terms of issues, research topics and solution approaches. Using 3W1H—Why to log, Where to log, What to log and How
well is the logging—as the categorization standard, we find that: (1) the best known issues in logging practices have been repeatedly
investigated; (2) the issues are often studied separately without considering their intricate relationships; (3) the Where and What
questions have attracted the majority of research attention while little research effort has been made on the Why and How well
questions; and (4) the relationships between issues, research topics, and approaches regarding logging practices appear
many-to-many, which indicates a lack of profound understanding of the issues in practice and how they should be appropriately
tackled. Conclusions: This study indicates a need to advance the state of research on logging practices. For example, more research
effort should be invested on why to log to set the anchor of logging practices as well as on how well is the logging to close the loop. In
addition, a holistic process perspective should be taken into account in both the research and the adoption related to logging practices.

Index Terms—Logging practices, Log, Systematic mapping, Empirical study

✦

1 INTRODUCTION

R ECENTLY, along with the popularity of DevOps, con-
tinuity has been widely recognized as an inherent

requirement for many on-line software services [1]. This
situation makes it more prominent than ever to monitor
software services and address anomalies in a timely manner.
Meanwhile, modern software systems are getting larger
and more distributed, making it more challenging to de-
tect anomalies and locate the corresponding root causes
particularly in intricate software systems. Information such
as runtime behavior of software systems is thus believed
critical by many researchers and practitioners in detecting
and addressing anomalies. Logging is commonly used to
capture such runtime behavior information. According to
Zhao et al.’s [Zhao 17] and Yuan et al.’s [Yuan 12b] studies,
the information contained in logs is often the only source
available for software engineers to troubleshoot and diag-
nose software failures in a production environment.

As an intensively investigated research topic, there are
many similar terms describing key concepts around logging.
To avoid confusion, we summarize common concepts in Ta-
ble 1, which will be consistently used throughout this paper.
Apparently, the information contained in logs is determined

• Shenghui Gu, Guoping Rong, and He Zhang are with the State Key
Laboratory for Novel Software Technology, Nanjing University, China.
E-mail: shenghui.gu@smail.nju.edu.cn, {ronggp, hezhang}@nju.edu.cn

• Haifeng Shen is with the HilstLab, Peter Faber Business School, Aus-
tralian Catholic University, Sydney, Australia.
E-mail: haifeng.shen@acu.edu.au

logger.error(“File not found, file name: ” + fileName);

02-02 15:42:20,695 [main] ERROR com.example.demo.Main File not found, file name: demo.txt

…

02-02 17:25:42,394 [main] INFO com.example.demo.Main Request length: 12903

Log level Log content

Log message

Log statement

Log

Before execution

After execution

Fig. 1. Logging related terms in an example.

by the log statements that developers insert in source code,
which will generate logs when being triggered. Figure 1
depicts relevant logging entities. The upper part of this
figure is an example of a log statement, which normally
occurs in the source code as necessary. After it has been
executed under certain conditions, the log statement will
generate a ‘Log’, as shown by the lower part of Fig. 1.
A ‘Log’ usually contains a large number of entries, aka
‘Log messages’. In general, ‘Log level’, ‘Log content’, and a
suitable place to put a log statement in are usually decided
by developers during software development. One focus of
the current research is the 2-W questions, i.e. the context of
a logging-prone code snippet (where to log?) and the content
or level of a log statement (what to log?) [2], [Chen 20],
[Chen 17a].

1.1 Problem description and research motivation

Although the importance of logging practices has been
broadly recognized in industry [Kabi 16b], [Pecc 15],
[Yuan 12b], [3], such practices are still far from satisfac-

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2022.3166924, IEEE
Transactions on Software Engineering

2 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14, NO. 8, JANUARY 2021

TABLE 1
Logging related terms.

Term Description

Log statement A log statement is a statement placed in the source code
that outputs a record of the behavior of the specified
program during execution.

Log message A log message is the information generated by the pro-
gram at runtime based on a log statement.

Log A log is a collection of the execution outputs of log
statements, usually stored in a text file or a database.

Log level Log levels reflect the verbosity or severity of the log
messages, and log messages are usually clustered for
analysis based on these log levels.

Log content Log content refers to the information carried by the log
statement, including static text and variables.

Log location A log location is the place where a log statement is
inserted.

Log placement Log placement is a strategic design and implementation
of the 2-W questions for all log statements in the source
code of a system or component.

Logging Logging is a developer’s action of inserting a log state-
ment to a certain code snippet. Apparently, the developer
needs to decide the 2-W when conducting logging.

Logging practice A logging practice refers to any practice pertinent to the
insertion or revision of log statements for a system or
component, which is also the research object in this study.

tory [Liu 20]. As a matter of fact, current logging prac-
tices are basically carried out manually and heavily rely
on the expertise, experience and preference of software
engineers [Pecc 15], [Yuan 12b], [Yuan 12c]. Typically, soft-
ware engineers need to consider the 2-W questions during
coding, easily leading to either insufficient or excessive
logging. For example, studies carried out both in industry
and academia revealed several typical issues in current
logging practices, including low and divergent density of
log statements [Rong 18], [4], misuse of log levels [Rong 18],
[Yuan 12b], and lack of necessary information-capturing
variables [Yuan 12a], [4]. These issues may easily lead to
questionable realization of the primary purpose to carry out
logging practices [Li 20a], [Rong 20], i.e. capturing the run-
time behavior of software systems as intended. Meanwhile,
although relatively extensive research has been done to
improve logging practices, it seems that the industry has not
benefited from these research outcomes. For instance, opti-
mizing log location and enhancing log content have been
well proposed in the literature to improve logging practices,
however, they are rarely adopted by the most widely used
logging tools in daily development tasks [Fu 14], [Li 18b],
[Yuan 12b], [Zhu 15].

To uncover possible reasons behind this phenomenon,
it is important to establish a holistic view on the research
status of logging practices, including the challenges in
logging practices and the proposed solutions, and more
importantly the possible problems and gaps in the existing
research which may further shed light on the potential
future research directions. Only a handful of studies have
been conducted [2], [5], [6], [7] to review the challenges and
the solutions available. However, the issues in the existing
research are rarely analyzed and discussed. To this end,
this work is motivated by the need to depict a landscape
of logging practices, identify gaps between challenges and

solutions, and suggest potential remedies and future re-
search directions to close the loop through a systematic
mapping study (SMS). To be specific, we describe the goal
of this study using a Goal-Question-Metric (GQM) [8] style
as follows:

By aggregating and synthesizing the existing issues, re-
search topics, and proposed approaches related to logging practices

For the purpose of systematically establishing an insight to
the state-of-the-art in the area of logging practices, revealing omis-
sions/problems and hence indicating potential research directions

From the perspective of software engineering researchers
and practitioners

In the context of logging practices in the development and
maintenance of regular business software systems.

The description of the research goal implies the focus
of this study which is elaborated in detail in Section 2.2.
In short, we are only concerned with software engineers’
logging practices when instrumenting log statements in
regular business software systems. As a result, log analysis
or building logging framework/infrastructure is beyond the
scope of this work.

1.2 Research approach and contribution

A systematic mapping study (SMS) provides an overview of
a research area through classification and counting contribu-
tions in relation to the categories of that classification [9].
It is a suitable approach to addressing the research goal
presented in the above subsection. By following the guide-
lines [9], [10], [11], [12], we examined 56 primary studies
published in the mainstream Software Engineering (SE)
venues with a focus on logging practices. As the result, we
are able to provide a holistic view of the existing research,
clarify the issues in logging practices and summarize rel-
evant solutions or approaches. More importantly, through
cross analysis, we are able to identify gaps and derive poten-
tial follow-up research directions that may bring significant
benefits to the whole community that heavily relies on log-
ging in their software development and maintenance tasks.
The main contributions of this paper can be summarized as
follows:

• It presents a comprehensive understanding on the state-
of-the-art research on logging practices using 3W1H—
Why to log, Where to log, What to log and How well is the
logging—as the categorization standard.

• It discovers that the current research focus regarding
logging practices has been on the 2-W questions. In
other words, the majority of issues, research topics and
solution approaches fall in the categories of Where to
log and What to log, in contrast, little research effort has
been made on Why to log and How well is the logging.

• It unveils possible problems in the existing research
through cross analysis, e.g., “lack of research to address
critical issues”, “unrealistic expectation of general yet
adaptable solutions” and “separated research within
logging practices and between logging practices and
log analysis”.

• It suggests several potential future research directions,
for example, considering a process perspective to log-
ging practices and recognizing the anchor value of
logging intentions and concerns (I&C).

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2022.3166924, IEEE
Transactions on Software Engineering

SHENGHUI et al.: LOGGING PRACTICES IN SOFTWARE ENGINEERING: A SYSTEMATIC MAPPING STUDY 3

1.3 Organization
The rest of this paper is organized as follows. Section 2
elaborates our research method. The metadata results are
presented in Section 3. In Section 4, we explain the 3W1H
categorization scheme that is applied throughout the whole
study. The results and findings to each research question
are presented in Section 5. In Section 6, we discuss possible
reasons behind the current status quo, and several consid-
erations for the next-step research on logging practices. The
threats to validity are discussed in Section 7. To position this
work among all relevant empirical studies, we describe the
related work in Section 8. Finally, we conclude this paper
in Section 9.

2 RESEARCH METHOD

In this section, we elaborate the research questions, the
research scope, the roles and responsibilities of participating
researchers, and the research tasks, followed by the detailed
process for literature search as well as the processes for data
extraction, synthesis and analysis.

2.1 Research questions
To address the research goal and shed proper light on the
research state of logging practices, four research questions
(RQs) are promoted as follows.
RQ1: What major issues regarding logging practices have
been identified by existing research?
Researchers dedicated to logging practices are usually at a
better position to understand the issues that are targeted in
relevant studies. In this sense, this research question aims
to aggregate these issues to better understand the major
challenges and necessary contextual information regarding
logging practices.
RQ2: What major research topics regarding logging prac-
tices have been investigated by existing research?
This research question aims to reveal the hot spots in log-
ging practices that researchers have been investigating. It
attempts to portray the landscape of major research topics
around logging practices.
RQ3: What solutions/approaches are proposed in existing
research?
This research question aims to summarize and classify
the solutions or approaches proposed by existing studies,
through which we may be able to establish a fair under-
standing of the research progress towards addressing the
issues identified in RQ1 and the topics identified in RQ2.
RQ4: What gaps exist between the identified issues re-
garding logging practices and the research efforts in
tackling these issues?
This research question aims to reveal the extent to which ex-
isting research is able to address the issues in logging prac-
tices and pinpoint possible gaps between the issues/topics
identified in RQ1/RQ2 and the solutions/approaches pro-
posed in RQ3.

2.2 Research scope
It is important to clearly define the scope of a study so that
only relevant primary studies are reviewed to answer the
research questions.

First of all, the scope of this study is limited to the
starting point of logging, i.e. the practices used to generate
logs during software development and maintenance, which
is similar to that of Chen’s survey paper [2], i.e. the Log
Instrumentation Phase. Therefore, research on log analysis,
which is the ending point of logging and concentrates on
utilizing the information in logs to achieve development or
management objectives such as detecting bugs, optimizing
system performance or performing recommendations, is out
of the scope of this study. That said, it is worth noting that
from a process perspective, knowing the information needs
in log analysis may have a positive impact on improving
the practices for log generation. However, the process per-
spective has not been established in existing research and
we have found that the work reporting the impact of log
analysis on logging practices is generally scarce. Therefore,
it makes sense to exclude log analysis in the scope of this
study.

Second, we only focus on the logging practices that
assist in generating logs used to diagnose errors or failures
contained in the software systems therein. Therefore, those
logging practices generating logs of end user behavior anal-
ysis for business needs, e.g., audit logs [13] and security
logs [14], are beyond the scope of this study.

In a nutshell, the scope of this study is thus constrained
to the studies that investigate how an appropriate log
statement is placed in a suitable place in source code to
effectively generate logs for capturing runtime behavior so
as to support defect detection in the software system. See
Appendix B for more detail and examples.

2.3 Roles and responsibilities

In addition to the listed authors, this study also involved
eight master students from a seminar series over a span of 5
months. All the participants met weekly or as needed for
publication screening, data extraction, consolidation, and
discussion.

In detail, one author (the supervisor) took charge of
the discussion on research questions, research methodology,
and data extraction schema at the time of designing the SMS
protocol.

When it came to literature screening and data extraction,
at least two students handled each paper independently and
the supervisor cross-checked all the work accomplished by
the students. In the process of data synthesis, one doctoral
student of the authors led the whole process with the par-
ticipation of the eight master students, and the supervisor
also cross-checked their outcomes.

To reach consensuses and avoid potential biases, we
established several mechanisms as follows.

1) We carried out several trial runs in the seminar series to
train these students for mastering data extraction and
synthesis methods. The students are required to present
and discuss their findings at the end of each trial run.

2) All participants needed to vote for each finding with
the options of ‘agree’, ‘object’, and ‘not object’. The
option of ‘not object’ is a neutral opinion, meaning one
does not fully agree on a finding but can accept it. A
consensus requires at least one ‘agree’ and no ‘object’ at
the same time.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2022.3166924, IEEE
Transactions on Software Engineering

4 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14, NO. 8, JANUARY 2021

3) If a consensus is not reached on a finding, a discussion
meeting is organized to sort out the discrepancies.

2.4 Research tasks

To answer the four research questions, three research tasks
were conducted: the ‘setup’ task is to set up the literature
review; the ‘aggregation&synthesis’ task is dedicated to
collecting evidence to answer research questions RQ1, RQ2
and RQ3; the ‘cross analysis’ task is conducted to synthesize
the information to answer RQ4. The tasks were conducted in
a sequential manner and interconnected through a number
of artifacts generated by their subtasks. The overall research
process is illustrated in Fig. 2 and detailed as below.

The ‘setup’ task includes definition of the research ques-
tions and the review protocol, selection of search venues
and databases, definition and revision of the search string,
and identification of the primary studies. The detailed
steps in this task is presented in Section 2.5. The ‘aggre-
gation&synthesis’ task was conducted to extract the data
from the primary studies in terms of the research questions,
and then to map the data into four categories, i.e. Why to
log? Where to log? What to log? and How well is the logging?
(cf. Section 4). Further, we used an iterative coding process
to identify the main categories of the extracted data for each
research question, which is detailed in Section 2.7. In the
‘cross analysis’ task, we synthesized the review results and
performed cross analysis so as to further reveal several im-
plications to answer RQ4, which is presented in Section 5.4.

2.5 Search process

A strict and repeatable search process is one important
characteristic of an SMS. We applied several strategies to
boost this characteristic in the search process of our study.
In general, an explicitly defined search process is required,
as illustrated in the ‘setup’ task in Fig. 2. First, we conducted
a manual search from the premier SE conferences and
journals, and retrieved 11 papers. Based on these papers,
a search string was formed, revised and used for auto-
mated search in the selected digital libraries. At that point,
7,669 papers were retrieved. By applying the predefined
inclusion/exclusion criteria (as shown in Table 2), these
papers were then quickly screened manually, reducing to
109 papers. After reading the full-text of these 109 papers for
further screening, we finally ended up with 54 papers. As
the last step, a complementary snowballing search process
was performed to obtain potentially relevant studies so as
to pursue a comprehensive set of relevant studies. From this
step, we obtained two more papers, making a final set of 56
papers selected as the primary studies for this work.

2.5.1 Manual search
The manual search was carried out on the following major
software engineering conferences and journals:

• International Conference on Software Engineering
(ICSE)

• IEEE Transactions on Software Engineering (TSE)
• Empirical Software Engineering (EMSE)
• IEEE International Conference on Software Mainte-

nance and Evolution (ICSME)

• IEEE Working Conference on Mining Software Reposi-
tories (MSR)

• Journal of Systems and Software (JSS)
The purpose of manual search was not to cover all poten-

tial sources, but only a portion that contains the most high-
quality studies relevant to our RQs according to our initial
knowledge. The publication time span was constrained from
2000 to 2020 for the reason that the number of papers related
to logging practices is quite small before 2000, according to
our previous study [5]. As the result, we gathered 11 papers
on logging practices from the manual search.

2.5.2 Search string
We developed the search string using the following steps in
the light of the guidelines proposed in [15], [16].
Step 1: We first derived major search terms from our RQs
and the keywords in the relevant publications we obtained
from manual search.
Step 2: We then combined the identified search terms into
a set of candidate search strings.
Step 3: At last, we performed several pilot searches to
improve and determine the most suitable search string ac-
cording to the Quasi-Gold Standard (QGS) based systematic
search approach [17]. With reference to our previous expe-
rience [5], this time we keep 90.9% and 0.13% for sensitivity
and precision respectively, so as to include as much literature
as possible.

As the result, we have the search string as below.
(logging OR log OR logs) AND (practice OR practices

OR statement OR statements OR construct OR constructs
OR format OR formats OR code)

Note that the search string needs to be coded according
to different digital libraries’ search syntax.

2.5.3 Automated search
The automated search was performed in the following digi-
tal libraries.

• ACM Digital Library1

• IEEE Xplore2

• ScienceDirect3

• Scopus4

• Wiley Online Library5

With reference to many existing systematic mapping
and review studies, as well as the statistics of the litera-
ture search engines [17], these selected digital libraries are
believed to provide a wide coverage of relevant primary
studies.

2.5.4 Study identification
Three steps are performed to identify and determine the
set of primary studies for final analysis, including quick
scanning to filter out irrelevant studies, full text reading to
assure quality of the relevant studies, and snowballing to
ensure that the chance of missing important relevant studies
is minimized as much as possible. We detail these steps in
the following paragraphs.

1. https://dl.acm.org/
2. https://ieeexplore.ieee.org/
3. https://www.sciencedirect.com/
4. https://www.scopus.com/
5. https://onlinelibrary.wiley.com/

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2022.3166924, IEEE
Transactions on Software Engineering

SHENGHUI et al.: LOGGING PRACTICES IN SOFTWARE ENGINEERING: A SYSTEMATIC MAPPING STUDY 5

Descriptive quantitative

analysis

Classification of the papers
Definition of the

search string

Manual search

Quickly screening

Snowballing
Refined study

collection

Inclusion/exclusion

criteria

Definition of the

research questions

Data extraction

schema

New keywords

found
No new

keywords found

Full text screening

Automated search

Raw paper

collection

Definition of the

review protocol

Setup

Paper review

Data extraction

Analysis results

Cross analysis

Cross analysis results

Aggregation & Synthesis

Data synthesis
High-level

concepts

Classified paper

collection

Cross Analysis

11 papers

7,669 papers

109 papers

2 papers 54 papers

56 studies

1 42 3

1 42 3

1 432

1 432

1 432

1 432

1 432

1 432

1 432

1 432

1 432

1 432

1 432

1 432 X X: Author number

Conducted the activity

Cross-checked and reviewed

the activity and results

Fig. 2. Research process.

TABLE 2
Criteria to include/exclude a study.

Inclusion criteria

I1 Studies must be published by conferences, journals, or symposiums*.
I2 Studies must be written in English.
I3 Studies must be published after 2000.
I4 Studies must be primary research.
I5 Studies must focus on logging practices.

Exclusion criteria

E1 Studies investigate log analysis or usage of log messages.
E2 Studies investigate techniques for logging user behaviors.
E3 Studies do not explicitly discuss logging practices.
E4 Studies are published by workshops.
E5 Studies are published as position papers or work in progress.
E6 Studies replicate work in previous publications.
* Only for those well-known symposiums, e.g., ISSRE, ESEM.

Quick scanning: During this step, a quick screening
of the titles and abstracts of the potential studies was
performed by following the inclusion/exclusion criteria de-
tailed in Table 2. For those papers that are unable to be
excluded by checking title and abstract, we postponed the
decision to the following steps. As the result, we had 109
papers after this step.

Full text reading: With the 109 papers, we read their
full-text to make further exclusion and then eliminate the
irrelevant ones from the previous step. It is worth noting
that the same study may have been published in multiple

papers, and in this case we only keep the most complete
version by reading and comparing the content of all versions
of the work in detail. As the result, we retained 54 papers
after this step.

Snowballing: We performed a snowballing search to
further retrieve potential relevant studies, which consists of
backward snowballing, forward snowballing, and author snow-
balling. Detailed steps are listed as the following.

Backward snowballing: Based on the reference lists of the
54 papers derived from the previous steps, we retrieved
papers using the criteria from Table 2.

Forward snowballing: Use Google Scholar to identify pa-
pers citing the current 54 papers. Meanwhile, the selection
criteria were also applied to identify and include an extra
relevant paper.

Author snowballing: All publications of each author of
the 54 identified papers were further checked against the
selection criteria for final possible inclusion.

As the result, two new papers were identified in the
forward snowballing step.

2.6 Data Extraction
The relevant data was extracted from the 56 selected studies
according to a predefined extraction schema, as depicted
in Table 3, that covers two major aspects of information,
i.e. metadata and specific information, respectively.

The metadata includes information such as author, year,
title, and publishing venue, which provides a big picture

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2022.3166924, IEEE
Transactions on Software Engineering

6 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14, NO. 8, JANUARY 2021

TABLE 3
Data extraction schema.

Attribute Description RQ

Author The authors of the publication. Meta
Title The title of the publication.
Year The published year of the publication.
Venue type The venue type of the publication (conference, jour-

nal, etc).
Venue name The venue name of the publication.

Logging
issue

The issues and problems in current logging prac-
tices.

RQ1,
RQ4

Research mo-
tivation

The motivation of the selected study. RQ2,
RQ4

Research
question

The research questions of the selected study.

Research
subject

The subject of the selected research.

Proposed ap-
proach

The approach, method, tool or algorithm proposed
by the selected research, as well as their description,
pros and cons.

RQ3,
RQ4

Research con-
tribution

The main contribution of the selected study.

Research con-
clusion

The conclusion of the selected study.

of the overall research state, for instance, the number of
studies each year, the potential trend, and the distribution
of publication venues.

Meanwhile, the specific information is derived from the
research questions of this study. The relationship between
the specific information and research questions is listed
in Table 3. Note that answering RQ4 requires a cross analysis
of the information used to answer RQ1, RQ2 and RQ3.

2.7 Data synthesis

We applied both quantitative and qualitative methods to
synthesize the evidence to answer all the research questions.
This subsection elaborates the data synthesis methods we
adopted in this research.

Descriptive statistics is the major quantitative method
used to describe and summarize data characteristics. To be
specific, it was adopted to synthesize the quantitative data
to present trend (Fig. 3), distribution (Fig. 4), etc.

Thematic analysis is the major qualitative method applied
in our study to identify common themes within data [18]. It
was used to understand commonly raised issues, research
topics, proposed approaches regarding logging practices.
To assist thematic analysis, coding, the process of labeling
and organizing qualitative data, was applied to identify and
distinguish themes and the relationships between them [19].
Basically, we used open coding and axial coding to attain high-
level concepts from the extracted data for each research
question. Open coding is conducted to identify the concep-
tual categories from the original data, where the generated
‘code’ is designed to retain the exact words as much as
possible. Axial coding is used to generate a set of new ‘codes’
by comparing and merging the ‘codes’ identified in open
coding as appropriate. For example, “useless log messages”
and “arbitrarily placed log statements likely generate a lot of
trivial logs that may be redundant or useless” were further
coded as “redundant or useless log messages”.

TABLE 4
Study distribution over electronic libraries.

Electronic library # Retrieved studies # Relevant studies

ACM Digital Library 1,757 26
IEEE Xplore 2,472 28
ScienceDirect 983 1
Scopus 548 37
Wiley Online Library 1,909 2

1 1 1

5

1
2

4

6 6

10
9

10

0

2

4

6

8

10

12

P
ri

m
ar

y
 s

tu
d

y
 a

m
o

u
n

t

Fig. 3. Study distribution over years.

3 RESULTS

We first summarize the results of metadata in this section
to provide a bird’s eye view of the studies included in our
study.

A full list of the 56 studies is presented in Appendix A.
Table 4 describes the distribution of the 56 studies across
different electronic libraries. Note that one study may be
indexed by multiple digital libraries. Apparently, ACM Dig-
ital Library, IEEE Xplore and Scopus contribute the vast
majority of studies to our SMS.

The distribution of the publishing time can be illustrated
by grouping these studies into years, as shown in Fig. 3.
In general, a roughly ascending trend can be observed
regarding the number of studies over years, especially in
the recent years, indicating an increasing attention among
researchers to logging practice.

The publication venues of these 56 studies tend to be
diverse. However, we could observe that more than half of

ICSE

11% (6)
ICSME

5% (3)

SANER

5% (3)

USENIX ATC
3% (2)

ASE
4% (2)

ICPC
4% (2)

Other Conferences

32% (18)

Other Journals
11% (6)

IJOSSP

4% (2)

TSE

5% (3)

EMSE

16% (9)

Conference

64% (36)

Journal

36% (20)

Fig. 4. Study distribution over publication venues.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2022.3166924, IEEE
Transactions on Software Engineering

SHENGHUI et al.: LOGGING PRACTICES IN SOFTWARE ENGINEERING: A SYSTEMATIC MAPPING STUDY 7

the selected studies in our SMS are published at premier
venues such as TSE, EMSE, and ICSE, which to some extent
implies the high quality of the research as well as the
intensive interest in the community.

4 3W1H—ESSENTIALS ABOUT LOGGING

To provide a basis for data synthesis, a taxonomy scheme is
necessary to be defined in the beginning. Therefore, we ap-
plied the thematic analysis elaborated in Section 2.7 together
with our previous experience [Rong 20], [5] and current
knowledge on logging practice research (e.g., [2], [Li 20a],
[Fu 14], [Liu 19], [Kabi 16b]) to categorize the relevant
studies. As the scope of this study is limited to investigating
developers (Who) instrumenting log statements during soft-
ware development (When), the Who and When categories
are fixed and hence removed from the final category set.
As elaborated in Section 2.2, the 56 primary studies are
categorized into the four themes of 3W1H: Why to log? Where
to log? What to log? and How well is the logging?

• Why to log?
This question is related to the original intention to

carry out logging practices. Through log statements, most
developers’ intention is to capture and record information
relevant to dynamic system behaviors. However, this prac-
tice incurs cost/overhead, which triggers concerns to most
developers as well. To a certain degree, the intrinsic Inten-
tions & Concerns (I&Cs) play the role of initiating logging
practices. Several researchers have raised the awareness of
the importance of I&Cs for logging practices. For example,
Jia et al. present a model to describe the logging intentions,
which is a typical reason to answer why to log [Jia 18]. Never-
theless, our previous work on this topic revealed major gaps
between the developers’ I&Cs and the actual log statements
in the source code of real-world projects [Rong 20].

• Where to log?
This question considers one of the critical aspects re-

garding logging practices, i.e. to determine the location of
log statements in source code. Usually the answer to this
question only provides a general guidance on where to
place a log statement [Li 20b], [Fu 14]. As one of the most
concerned questions by researchers, many studies have been
conducted to determine and improve the location of log
statements in source code. For example, a high-level strategy
on logging practices is achieved by importing information
entropy theory into logging practices to optimize the lo-
cation of log statements [Zhao 17]. Lal et al. conducted a
series of studies adopting machine learning to predict log
statements in different code snippets [Lal 17], [Lal 16a],
[Lal 16c], [Lal 16b], [Lal 19].

• What to log?
This question involves with the subtle consideration

about concrete content (e.g., what variables should be
recorded? what is the suitable verbosity level?) of a log
statement. Various methods have been proposed to develop
the concrete content of a log statement. For example, some
tools have been designed to assist developers in deciding
verbosity level of log statements [Anu 19], [Li 17a], while
some tools have been designed to determine which variables
to log [Liu 19].

• How well is the logging?

Fig. 5. The relationships between the questions in the 3W1H catego-
rization.

In general, this question is concerned about the degree to
which developers’ I&Cs can be fulfilled in the implemented
source code and evolve over time. In this sense, the how
well question is only valid on existing log statements and
can be considered from two aspects. One is the deviation
between the implemented source code and some generally
accepted rule-of-thumb guidelines/rules regarding logging
practices [20], [21], [22]. Although these guidelines/rules
may be followed to convey developers’ I&Cs, they are not
always necessarily able to reflect the true I&Cs. The other
aspect is the deviation between the implemented source
code and the developers’ original I&Cs. In this sense, the im-
portance of relevant practices is self-evident. Some research
in this category focuses on evaluating the effectiveness of
existing logging mechanisms in the context of real-world
case studies [Cinq 10]. Other research focuses on the revision
of log statements after the delivery/release of a software
product, for example, to repair faults or to improve perfor-
mance or other quality attributes. A typical example is the
study carried out by Chen et al. [Chen 19]. In this study,
researchers extracted the historical issues in log statements
and revealed that the log statements had not been well
revised when the corresponding business code evolved to
meet new business requirements.

The relationships between the 3W1H questions are illus-
trated in Fig. 5. In general, the question of why to log seeks
the developer’s I&Cs, both implicitly and explicitly, which
translate to the 2-W questions (i.e. where to log and what to
log) in log placement. The question of where to log specifies
the log location, whereas the what to log question specifies
both log content and log level. To close the loop, the how well
question not only verifies whether log placement is properly
reflected in actual source code, but more importantly, it
also validates that the I&Cs are adequately satisfied. With
the 3W1H categorization scheme, we are not only able to
properly classify the issues, research topics and solution
approaches in current studies but also lay a solid foundation
for synthesis according to the inherent relationships across
the four questions.

To achieve a consistent understanding, a team discussion
is conducted to assign a proper category to a study accord-
ing to the specific research question and the corresponding

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2022.3166924, IEEE
Transactions on Software Engineering

8 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14, NO. 8, JANUARY 2021

Why WhatWhere How well

Heterogeneity of the log messages (9)

Difficulties in V&V

of log statements (2)

Maintenance

barriers (10)

0, 31, 52, 11

Lacking crucial messages (35)

Performance overhead (31)

Redundant or useless messages (23)

Incorrect or ambiguous messages (13)

Leakage of sensitive data (3)

More studies

Less studies

Fig. 6. Relationship between issues and the 3W1H categorization.

relevant evidence. It is noteworthy that one study may occur
in multiple categories simultaneously. For example, if the
issue (RQ1) is about the ‘performance overhead’, then it may
cover both where to log and what to log. Besides, one study
may also appear in different categories providing evidence
to answer different research questions. For example, a study
with the concern on ‘performance overhead’ may be catego-
rized as where to log in RQ1. If the relevant solution pertains
to the I&Cs, it may also appear in the category of why to log
in RQ3.

5 SYNTHESIS AND FINDINGS

In this section, we answer the four RQs using the evidence
we collected and synthesized from the review. By adopting
the 3W1H questions (cf. Section 4), we classified all the 56
studies into different categories according to the specific
research question and the corresponding relevant evidence.
The rest of this section elaborates our major observations
and findings.

5.1 Issues in logging practices (RQ1)
We first categorize the issues raised or discovered in the
primary studies through a manual coding approach (cf. Sec-
tion 2.7). Although the issues discovered in these primary
studies may contain higher credibility since concrete ev-
idence is provided, we also include the issues directly
claimed by researchers with the consideration that re-
searchers focusing on the exact area may better understand
the various pains of logging practice. Then from a different
perspective, we further categorize the issues into different
3W1H questions. With these two orthogonal perspectives,
we aim to present a big picture about the various pains of
logging practice.

In general, we identified 8 types of issues covering
different 3W1H questions except the question of why to log.
The detailed distribution of issues in logging practices is
shown in Table 5 and the relationship between these issues
and 3W1H questions is illustrated in Fig. 6. It is clear that
3/4 of the issues regarding logging practices fall into the
2-W questions. In contrast, only 1/4 issues are related to
the question of how well is logging, while no issue has been
identified to be relevant to the why to log question. This
finding implies that certain aspects of logging practice have
been neglected in the community. Note that the percentage
of each issue denotes the proportion of the primary studies

in relation to this issue. Since one study may raise different
issues and occur in different categories, the sum of all the
percentage may exceed 100%. In the following subsections,
we elaborate these issues in detail for each 3W1H question.

5.1.1 “What to log” issues

This category has the most issues related to logging prac-
tices.

Lacking crucial messages in log statements turns out
to be the most discussed issue, which is reported in 35
(62.5%) studies. In practice, key decisions about logging
are normally left to the programming stage, which easily
ends up with insufficient logging [Cinq 09]. Several stud-
ies [Zhi 19], [Yuan 12b], [Cinq 12], [Rong 18], [Li 18b],
[Tova 13], [Hass 18], [Kubo 20], [Cinq 20] directly pointed
out or implied this issue or the like. In fact, insufficient
logging may be derived from either less than expected log
statements [Fu 14], [Ghol 20], [Jia 18], [Lal 16b], [Lal 17],
[Lal 15], [Lal 16a], [Lal 16c], [Lal 19], [Li 20b], [Li 17a],
[Li 17b], [Luo 18], [Mizo 19], [Sain 16], [Yao 18], [Zeng 19],
[Zhao 17] or missing key variables in log statements [Liu 19].
Both create obstacles for log analysis [Yuan 12c], [Li 18a],
i.e. lacking crucial messages. In [Yuan 12a], it is confirmed
that the majority of failures do not have failure-related
log messages. Moreover, Li et al. conducted a qualitative
study and confirmed that missing log messages may lead
to extra effort in subsequent analysis and even confuse
users [Li 20a], which is also confirmed in [Cinq 10].

Redundant or useless messages in log statements be-
come an issue on the opposite end of the spectrum, which
has also been pointed by many researchers, 23 (41.1%)
studies to be specific. Excessive logging may be one of
the reasons for redundant or useless messages [Fu 14].
Meanwhile, with the increasing complexity of software
systems and the way to construct and deploy them (e.g.,
microservice architecture), software systems or services are
producing more log messages than before [23], [24], [25]. A
large portion of log messages are redundant or useless as
mentioned by many studies [Cinq 09], [Zhi 19], [Cinq 12],
[Marr 18], [Ding 15], [Li 18b], [Tova 13], [Hass 18], [Fu 14],
[Li 17a], in which valuable log messages may be obscured by
these ‘garbage’ noises [Li 18a], [Anu 19], [Lal 17], [Lal 16a],
[Lal 16c], [Li 20b], [Liu 20], [Liu 19], [Sain 16], [Shan 14],
[Zeng 19], [Zhu 15], [Li 20a], creating big challenges to
store and analyze the logs to satisfy the original intention
of logging practices, e.g., failure detection, diagnosis and
recovery.

Incorrect or ambiguous messages in log statements are
another notable issue, which has been mentioned by 13
(23.2%) studies. Several studies report that some events and
information captured by the logs may be incorrect or mis-
leading and unable to support further operations [Cinq 09],
[Zhi 19], [Cinq 10], [Kim 19], [Pecc 12], [Pecc 15], [Tova 13],
[Hass 18], [Chen 17a], [Cinq 12], [He 18], [Li 19]. For ex-
ample, Cinque et al. stated the presence of misleading log
messages may cause inaccurate log analysis, compromising
the ability of discriminating events related to actual failures
from presumed ones [Cinq 09]. Li et al. also claimed that
incorrect log content or levels may confuse developers in
debugging [Li 20a].

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2022.3166924, IEEE
Transactions on Software Engineering

SHENGHUI et al.: LOGGING PRACTICES IN SOFTWARE ENGINEERING: A SYSTEMATIC MAPPING STUDY 9

TABLE 5
Distribution of issues in logging practices.

Category Issue Primary studies Percentage

Where
& What

Performance overhead [Chen 17a], [Chow 18], [Ding 15], [Fu 14], [Ghol 20], [Jia 18], [Kabi 16a], [Lal 16b], [Lal 17],
[Lal 15], [Lal 16a], [Lal 16c], [Lal 19], [Li 20b], [Li 17a], [Li 17b], [Li 18a], [Li 20a], [Liu 20],
[Liu 19], [Luo 18], [Marr 18], [Mizo 19], [Sain 16], [Shan 14], [Yao 18], [Yuan 12b], [Yuan 12a],
[Zeng 19], [Zhao 17], [Zhu 15]

55.4%

What

Lacking crucial messages [Cinq 09], [Cinq 10], [Cinq 20], [Cinq 12], [Fu 14], [Ghol 20], [Hass 18], [Jia 18], [Kubo 20],
[Lal 16b], [Lal 17], [Lal 15], [Lal 16a], [Lal 16c], [Lal 19], [Li 20b], [Li 17a], [Li 17b], [Li 18a],
[Li 18b], [Li 20a], [Liu 20], [Liu 19], [Luo 18], [Mizo 19], [Rong 18], [Sain 16], [Tova 13],
[Yao 18], [Yuan 12b], [Yuan 12a], [Yuan 12c], [Zeng 19], [Zhao 17], [Zhi 19]

62.5%

Redundant or useless messages [Anu 19], [Cinq 09], [Cinq 12], [Ding 15], [Fu 14], [Hass 18], [Lal 17], [Lal 16a], [Lal 16c],
[Li 20b], [Li 17a], [Li 18a], [Li 18b], [Li 20a], [Liu 20], [Liu 19], [Marr 18], [Sain 16], [Shan 14],
[Tova 13], [Zeng 19], [Zhi 19], [Zhu 15]

41.1%

Incorrect or ambiguous messages [Chen 17a], [Cinq 09], [Cinq 10], [Cinq 12], [Hass 18], [He 18], [Kim 19], [Li 19], [Li 20a],
[Pecc 15], [Pecc 12], [Tova 13], [Zhi 19]

23.2%

Heterogeneity of the log messages [Chen 20], [Cinq 09], [Ghol 20], [He 18], [Liu 20], [Marr 18], [Pecc 15], [Salf 04], [Tova 13] 16.1%
Leakage of sensitive data [Li 20a], [Zhi 20], [Zhou 20] 5.4%

How well
Maintenance barriers [Chen 17b], [Chen 19], [Chen 17a], [Ghol 20], [Li 18b], [Pecc 15], [Yuan 12b], [Li 20a],

[Kabi 16b], [Shan 14]
17.9%

Difficulties in V&V of log statements [Chen 19], [Rong 20] 3.6%

Heterogeneity of log messages is also an issue attract-
ing researcher’s attention, which has been mentioned in
9 (16.1%) studies. Due to the unstructured nature of log
content itself and the arbitrariness of logging practices, the
format and content of log messages is generally heteroge-
neous [Liu 20], [He 18], [Pecc 15], [Marr 18], [Ghol 20],
[Tova 13], [Salf 04], especially with the increase of sys-
tem complexity, which naturally involves more develop-
ers [Cinq 09]. The format of log messages is usually de-
termined by the logging tools or libraries in use, while
the content of log messages is normally determined by
developers’ intentions or information needs. Both aspects
can vary with different developers or projects, leading to
heterogeneity of log messages and further influencing the
effectiveness of log analysis [Cinq 09].

Leakage of sensitive data is an issue pertaining to infor-
mation security. Log files may contain sensitive information
due to security breaches in logging practices. Zhi et al. iden-
tified several common root causes of this issue [Zhi 20], e.g.,
insecure whole-object logging in which developers make
logging calls with direct reference to composite objects
and incorrect permission assignment that leads to leak of
sensitive information in log files. Although it is only men-
tioned in three studies [Zhou 20], [Li 20a], [Zhi 20] (5.4%
of the overall studies), this type of privacy and security
vulnerabilities can not be neglected.

5.1.2 “How well is logging” issues
We identified two issues related to how well is logging.

Maintenance barriers is a major issue in this category,
which has been reported in 10 (17.9%) studies. As men-
tioned in [Kabi 16b], logs are often unstable, e.g., the log
statements often change without considering other stake-
holders, influencing the subsequent analysis and increasing
the maintenance cost. Some of the modifications may even
introduce errors into the target systems [Shan 14] and ap-
proximately one third of modifications of log statements
are after-thoughts when there is no proper log statement
in the first place [Yuan 12b]. Moreover, log statements
often co-evolve with bug fixes or feature updates, mak-
ing it even more challenging to maintain them in fre-

quently evolving systems [Li 18b], [Chen 17a], [Chen 17b],
[Chen 19], [Ghol 20], [Yuan 12b], [Pecc 15]. A notable point
is that too many log statements inside the business code
may also decrease code readability and quality [Li 20a],
[Chen 17a], thereby further hindering the maintainability of
both log statements and business code, which needs extra
efforts [Li 20a].

Difficulties in V&V of log statements are one of the two
issues identified in this category, which has been mentioned
in 2 (3.6%) studies. Unlike feature code or some code types
of cross-cutting concerns (e.g., exception handling or con-
figuration), whose correctness easily attracts attention and
can also be verified and validated via immediate practices
such as software testing, it is quite challenging to verify and
validate log statements [Chen 19]. As a result, log statements
in source code may thus incorrectly reflect developer’s I&Cs,
as confirmed in [Rong 20].

5.1.3 Issues across multiple categories
While the issues discussed above belong to a single category,
there is one issue covering a relatively wider range of
categories.

Performance overhead caused by log statements is a
major issue in the 2-W questions, which has been mentioned
in 31 (55.4%) studies. Both the location and content of log
statements can cause performance overhead. On the one
hand, adequate logging is important to understand the sys-
tem behavior comprehensively. The more log statements, the
more information to be captured in the log files. On the other
hand, excessive log statements may lead to unexpected side
effects such as performance slowdown or high cost to disk
I/O bandwidth [Shan 14], [Chow 18], [Liu 20], [Chen 17a],
[Zeng 19], [Li 17b], [Li 17a], [Liu 19], [Li 20a]. In this
sense, finding an appropriate trade-off between benefits and
costs of log placement is thus both crucial and challenging.
Although this issue in most cases is regarded as the issue in
programming, researchers began to realize the importance
of design in solving this issue [Lal 17], [Lal 16a], [Zhu 15],
[Marr 18], [Ding 15], [Yao 18], [Sain 16], [Ghol 20], [Lal 16c],
[Lal 16b], [Mizo 19], [Jia 18], [Lal 19], [Luo 18], [Li 20b],
[Kabi 16a], [Yuan 12b], [Yuan 12a].

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2022.3166924, IEEE
Transactions on Software Engineering

10 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14, NO. 8, JANUARY 2021

5, 26, 17, 16

Log evolution (10)
Logging

intention (5)

Defects in log

statements (2)

Logging

anti-pattern (2)
Logging security (2)

Log location (21)

Log level (6)

Log content (9)

Assessment of logging

mechanisms (2)

(5) Logging cost (2)

Why WhatWhere How well

Fig. 7. Relationship between research topics and 3W1H categorization.

Finding 1: Most studies focus on the issues related
to log content (what to log), which directly impacts the
information captured in log files. Among them, lacking
crucial messages and performance overhead have attracted
the majority of researchers’ attention. The latter issue
is also related to log location (where to log). In sum,
the 2-W questions (where to log and what to log) are the
top concerns to researchers. A noteworthy phenomenon
is that there are no specific issues associated to the
category of why to log.

5.2 Research topics on logging practices (RQ2)
In this section, we categorized the research topics through
manual coding with the 3W1H questions. Generally, we
identified 10 research topics and mapped them into the
3W1H questions/categories. The detailed distribution of
research topics is listed in Table 6 and the relationship
between the research topics and the 3W1H questions is
shown in Fig. 7. It is obvious that most research topics
pertain to the 2-W questions, which is consistent with the
findings we discussed in RQ1, i.e. most issues falling into the
2-W questions. In contrast, there are relatively few studies
focusing on research topics in the categories such as why to
log and how well is logging.

The identified research topics in each category of 3W1H
are elaborated as follows.

5.2.1 “Why to log” topics
There is only one research topic in this category.

Logging intention is the only one we identified in this
category, which has been raised by 5 (8.9%) studies. Li et
al. performed a qualitative study to understand the benefits
and costs towards logging practices from developers’ per-
spectives [Li 20a]. In addition, approaches to balancing both
aspects were also summarized in this study. Both benefits
and costs to a certain degree were able to reflect the I&Cs
that developers may have when making logging decisions.
Rong et al. carried out a case study at a real-world company
to understand developers’ I&Cs on logging and found that
the I&Cs always had not been reflected well in the actual
source code [Rong 20]. Pecchia et al. investigated the reasons
for logging practices and found three major purposes of
logging, i.e. state dump, execution tracing and event re-
porting [Pecc 15]. While these studies directly investigate
logging intentions, several others explore the adoption of
logging intentions in their research. For example, Li et

al. studied the relationship between the topics of a code
snippet and the likelihood of a code snippet being logged,
where such topics can be regarded as intentions [Li 18a]. Jia
et al. proposed two models to describe logging intentions,
and further designed and implemented an automatic log
placement tool based on the intention models [Jia 18]. One
reason for investigating logging intentions is that develop-
ers may not be fully aware of them, leading to uncertainty
about whether developers’ intentions are properly reflected
by the actual log statements in source code. In addition,
automated approaches to logging improvement might not
be convincing enough to developers without a clear under-
standing of developers’ logging intentions [Li 20a].

5.2.2 “Where to log” topics

We identified one research topic in this category.
Log location, i.e. where to log, is a major research topic

that has been investigated by 21 (37.2%) studies. As one
part of the 2-W questions, location of log statements af-
fects performance, storage overheads, and many other as-
pects of the target system. Hence researchers attempted
to establish an understanding of log location [Zhu 15],
[Rong 18], [Pecc 15], [Fu 14], [Li 20b] and optimize log
location [Cinq 09], [Cinq 10], [Yuan 12a], [Cinq 12], [Yao 18],
[Sain 16], [Ghol 20], [Jia 18], [Kubo 20] so as to make logging
practices more useful. In general, most studies attempted to
predict log location and provided convenient tools to sup-
port developers in making such decisions. For instance, Lal
et al. [Lal 17], [Lal 16a], [Lal 16c], [Lal 16b], [Lal 19], [Lal 15]
conducted a set of studies that used machine learning to
predict log statements in different code snippets. Several
other studies tried to optimize log location through better
log design. For example, Zhao et al. proposed an algorithm
that can automate the placement of log statements in source
code based on ‘entropy’ theory [Zhao 17].

5.2.3 “What to log” topics

We identified 3 research topics in this category.
Log content and log level are two research topics that

appear at the same time in many cases. These two top-
ics constitute the major part of what to log, which has
been investigated by 9 (16.1%) studies and 6 (10.7%) stud-
ies, respectively. Researchers have identified the charac-
teristics of log level and log content [Rong 18], [He 18],
[Liu 20], [Marr 18], [Zhi 19] and also proposed several
approaches to effectively capturing the information the log
statements carry with from multiple perspectives, e.g., suit-
able log level [Anu 19], [Kim 19], [Mizo 19], [Li 17a], static
text [Salf 04], [Yuan 12c], [Luo 18], [Tova 13], and necessary
variables [Liu 19]. Similar to the research on log location,
studies on log level/content also mainly focus on the pre-
diction of appropriate level/content and the approaches to
designing proper log level/content.

Logging security is another research topic in this cate-
gory which contains two (3.6%) studies. In [Zhou 20], they
pointed out the risk of data leakage of sensitive informa-
tion through logging practices and studied its impact. Zhi
et al. investigated the vulnerabilities that expose sensitive
information through logging, and found the top root cause
for the vulnerabilities is insecure whole-object logging,

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2022.3166924, IEEE
Transactions on Software Engineering

SHENGHUI et al.: LOGGING PRACTICES IN SOFTWARE ENGINEERING: A SYSTEMATIC MAPPING STUDY 11

TABLE 6
Distribution of research topics.

Category Topic Primary studies Percentage

Why Logging intention [Jia 18], [Li 18a], [Li 20a], [Pecc 15], [Rong 20] 8.9%

Where
Log location [Cinq 09], [Cinq 10], [Cinq 12], [Fu 14], [Ghol 20], [Jia 18], [Kubo 20], [Lal 16b], [Lal 17],

[Lal 15], [Lal 16a], [Lal 16c], [Lal 19], [Li 20b], [Pecc 15], [Rong 18], [Sain 16], [Yao 18],
[Yuan 12a], [Zhao 17], [Zhu 15]

37.2%

Where & What Logging cost [Chow 18], [Ding 15], [Li 20a], [Marr 18], [Zeng 19] 8.9%

What
Log content [He 18], [Liu 20], [Liu 19], [Luo 18], [Marr 18], [Salf 04], [Tova 13], [Yuan 12c], [Zhi 19] 16.1%
Log level [Anu 19], [Kim 19], [Li 17a], [Marr 18], [Mizo 19], [Rong 18] 10.7%
Logging security [Zhi 20], [Zhou 20] 3.6%

How well

Log evolution [Chen 17b], [Kabi 16b], [Li 17b], [Li 18b], [Pecc 15], [Shan 14], [Yuan 12b], [Chen 20],
[Kabi 16a], [Zhi 19]

17.9%

Assessment of logging mechanisms [Cinq 10], [Cinq 20], [Pecc 12] 5.4%
Logging anti-pattern [Chen 17a], [Li 19] 3.6%
Defects in log statements [Chen 19], [Hass 18] 3.6%

i.e. developers make logging calls with direct reference to
composite objects [Zhi 20].

5.2.4 “How well is logging” topics
Three research topics have been identified in the category of
how well is logging.

Log evolution is a major research topic in this category
involving 10 (17.9%) studies. These studies investigated
the factors that influence the evolution of log statements
and how they evolve. The research results of these stud-
ies can, to some extent, guide the implementation of log
statements to reduce the overhead required for subsequent
log maintenance. For example, several studies [Yuan 12b],
[Chen 17b], [Shan 14], [Pecc 15] answered the question
“how do developers change log statements?” from several dif-
ferent aspects, e.g., frequency and content of modification.
Kabinna et al. examined the changes to log statements in
four open source projects in order to reduce the maintenance
effort [Kabi 16b]. Li et al. attempted to explore the reasons
for changes made to log statements and thus provided sug-
gestions on log evolution [Li 17b]. Similarly, Li et al. aimed
to learn log evolution proactively from software evolution
and provided a tool to guide log evolution [Li 18b]. Besides
these studies, some researchers focused on the utilities
supporting logging practices in terms of evolution. For
example, Kabinna et al. studied logging library migrations
within open source projects to help developers mitigate the
migration effort [Kabi 16a]. The research result suggested
that logging library migration is not a trivial task which
requires significant design so as to balance the benefits and
costs. Zhi et al. explored configurations of logging utilities in
both open source projects and industrial projects, and found
that about 12.9% of changes to logging configurations were
to enhance usability and strengthen maintainability of log
statements [Zhi 19]. To maintain high quality log statements,
Chen et al. conducted a large-scale empirical study on the
use of logging utilities in real-world projects and found that
as the software systems evolve and grow bigger, the number
of logging utilities also increased [Chen 20].

Assessment of logging mechanisms is a further research
topic in this category, which has been studied by 3 (5.4%)
studies. For example, Cinque et al. [Cinq 10] evaluated the
effectiveness of current logging mechanisms in the context
of three real-world case studies and found that logs were

not able to provide useful information about failures in
most cases, which was further confirmed in their subsequent
work [Cinq 20]. Similarly, Pecchia et al. pointed out that it
is crucial to understand the reasons behind the issues in
logging mechanisms towards failure detection and the re-
sultant low efficiencies so as to increase the accuracy of logs
produced at runtime [Pecc 12]. Therefore, they proposed
an experimental study on the factors determining accurate
detection of software failures through logs and found that
the effectiveness of the log location was related to the chance
of error propagation paths to be exercised at runtime.

Logging anti-pattern is also a research topic belonging to
the how well category, which is reported by 2 (3.6%) studies.
The anti-patterns in log statements are recurrent mistakes
which may hinder both the understandability and the main-
tainability of the resulted log files. Chen et al. [Chen 17a]
conducted a comprehensive study to characterize and detect
anti-patterns in log statements so as to develop and main-
tain high-quality log statements. Six main anti-patterns were
identified by the authors, e.g., containing nullable objects,
wrong verbosity level, and malformed output of variables
without a human readable format. Similarly, as one of code
smells, duplication of log statements has been studied by
Li et al. [Li 19] to help developers improve their logging
practices.

Defects in log statements is another research topic re-
ported by 2 (3.6%) studies. The defects contained in log
statements have become one of the major concerns due to
the vast usage of logs in practice. Moreover, as claimed
in [Hass 18], it often takes longer time for issues regarding
log statement to be reported. Chen et al. extracted and
studied the historical issues in log statements and their fixes
based on several open source projects with the attempt to
support effective maintenance of log statements [Chen 19].

5.2.5 Topics across multiple categories
We also identified one research topic that is across the
categories of where to log and what to log.

Logging cost attracts concerns in 5 (8.9%) studies. As
mentioned in Section 5.1.3, excessive logging may lead to
performance issues. Therefore, empirical studies have been
conducted to investigate this dilemma [Li 20a], [Chow 18],
[Zeng 19] and several cost-aware logging mechanisms have
been proposed. For example, Marron proposed a logging

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2022.3166924, IEEE
Transactions on Software Engineering

12 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14, NO. 8, JANUARY 2021

Why WhatWhere How well

(3) Static analysis (2)

Rule-based logging (4)

(2) Dynamic logging (2)

18, 11, 1

(1) Entropy theory (1)

Content formatting (2)

(1) Intention-based logging (1)

(9) Machine learning-based logging (4) (1)

Fig. 8. Relationship between approaches and 3W1H categorization.

system based on a set of design principles to make logging
more efficient [Marr 18]. Ding et al. proposed a cost-aware
logging mechanism that helps achieve a balance between
logging overhead and effectiveness [Ding 15].

Finding 2: The distribution of research topics across
multiple categories is generally similar to that of re-
search issues. One noticeable exception is ‘logging in-
tention’, one topic in the category of why to log, which
received certain attention from the researchers. How-
ever, effective methods to obtain and satisfy developers’
actual logging intentions or the related obstacles and
issues to do so have never been essentially explored.

5.3 Proposed approaches and findings (RQ3)
Similarly, we also reviewed the approaches to logging prac-
tices through a manual coding process so as to understand
the research progress and trend. Using the 3W1H questions
elaborated in Section 4, we identified 7 types of approaches
covering three categories except why to log. The detailed
distribution of the approaches is shown in Table 7. Note that
all the approaches are categorized based on their inherent
characteristics instead of the issues they are addressing.
Besides, the relatively small percentages on the most right
column imply that approximately half of the studies did
not propose a concrete approach or tool. Apparently, most
approaches address the 2-W questions, which reasonably
confirms the finding that the 2-W questions are most con-
cerned by the researchers in this community. In the follow-
ing subsections, we elaborate the approaches proposed in
the primary studies in each category.

5.3.1 “Where to log” approaches
One approach has been identified in this category.

Rule-based logging approach instruments log statements
according to several manually or automatically defined
rules. There are 4 (7.1%) studies discussing this approach.
For example, Cinque et al. defined a minimal set of rules to
be followed during programming log statements in order to
effectively pinpoint failure locations [Cinq 09]. Their another
work introduces a novel rule-based logging approach that
leverages design artifacts to support effective log placement
into source code [Cinq 12]. The rule-based logging approach

was also applied in their follow-up work [Cinq 20] to
increase the amount of useful information carried by log
statements. In [Kubo 20], they developed a tool for identify-
ing typical data structures and applying coding conventions
(rules) to log statements so as to track inter-thread data
dependencies. The advantage of rule-based logging is that
key decisions can be designed in advance, thus enabling the
standardization of the log location and content during the
programming.

5.3.2 “What to log” approaches
We identified one approach in this category.

Content formatting is an approach to enforcing the out-
put format of logs by designing a mechanism for format-
ting log statements, which has been proposed by 2 (3.6%)
studies. For example, a logging mechanism proposed by
Tovarňák et al. [Tova 13] is able to produce logs in a unified
and extensible format allowing for efficient and automated
processing. The approach proposed by Marron provides
a suite of innovative log format and level management
techniques that enable a consistent and unified log con-
tent [Marr 18]. As the result, the log statements can be well
formatted logs for easy management and further processing.

5.3.3 Approaches across multiple categories
As a matter of fact, most proposed approaches can be
classified into multiple categories, which implies that these
approaches can be adopted to address issues across different
categories.

Static analysis is an approach to addressing the 2-W
questions, which has been proposed by 5 (8.9%) studies.
This approach analyzes the source code and thus builds
a model for specific tasks such as failure diagnosis. For
example, Yuan et al. [Yuan 12c], [Yuan 12a] developed a tool
that uses Saturn static analysis framework [26] to identify
potential unlogged exceptions. Similarly, Yao et al. [Yao 18]
and Fu et al. [Fu 14] applied static analysis frameworks and
tools to analyze source code in order to suggest suitable
log location. Li et al. used static analysis to identify code
smells of duplicate log statements to provide data basis for
developers to obtain a clearer understanding of the system
behavior and thus improve the logging practices [Li 19].

Dynamic logging is an approach which allows the out-
put of log statements to be dynamically determined by the
logging strategy or mechanism at runtime. The method has
been advocated in 4 (7.1%) studies. For instance, a tool
proposed by Mizouchi et al. is able to dynamically adjust
the log level of a running system to record detailed logs
for the abnormal events while limiting the amount/size
of logs for normal events [Mizo 19]. Ding et al. presented
a cost-aware logging system that can automatically deter-
mine whether to record runtime information according to
predefined resource budget [Ding 15]. Similarly, Zhao et
al. introduced an algorithm that can automate the placement
of log statements within a specified threshold of perfor-
mance overhead [Zhao 17]. Luo et al. presented a logging
system for troubleshooting transiently-recurrent problems,
with which logging information generated by a method
over a period of time is proportional to how often it is
reported for various misbehaviors [Luo 18]. In a nutshell,
dynamic logging is a strategy that is able to adjust log

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2022.3166924, IEEE
Transactions on Software Engineering

SHENGHUI et al.: LOGGING PRACTICES IN SOFTWARE ENGINEERING: A SYSTEMATIC MAPPING STUDY 13

TABLE 7
Distribution of proposed approaches.

Category Approach Primary studies Percentage

Where Rule-based logging [Cinq 09], [Cinq 20], [Cinq 12], [Kubo 20] 7.1%

Where
& What

Static analysis [Fu 14], [Li 19], [Yao 18], [Yuan 12a], [Yuan 12c] 8.9%
Dynamic logging [Ding 15], [Luo 18], [Mizo 19], [Zhao 17] 7.1%
Entropy theory [Hass 18], [Zhao 17] 3.6%
Intention-based logging [Anu 19], [Jia 18] 3.6%

What Content formatting [Marr 18], [Tova 13] 3.6%

Where & What
& How well

Machine learning-based logging [Anu 19], [Fu 14], [Ghol 20], [Kim 19], [Lal 16b], [Lal 17], [Lal 16a], [Lal 16c], [Lal 19], [Li 17a],
[Li 17b], [Liu 19], [Sain 16], [Zhu 15]

25.0%

placement at runtime according to the system status, pre-
defined rules, or some other metrics. Generally speaking,
dynamic logging is mainly used in scenarios where resource
or additional overhead is limited for logging.

Entropy theory in log design is another approach, which
was adopted by 2 (3.6%) studies. Such approach calculates
the entropy of the information carried by log statements or
their context, and thus optimizes the location or enhances
the content or level of these log statements. For example,
Zhao et al. applied entropy to optimizing the location of log
statements [Zhao 17]. Hassani et al. proposed a log level
checker that used entropy to calculate the proper level of
log statements based on the probability of appearance of
phrases in the log content [Hass 18]. Based on the informa-
tion contained in the content or context of the log statement,
information entropy is believed to be able to assist the
design of log placement.

Intention-based logging is an approach specifically to the
2-W questions, which we identified in 2 (3.6%) studies. Jia et
al. regarded the semantics of log context (usually the natural
interpretation of the code comments) as logging intention
and suggested that a better log placement strategy should
take the logging intention into consideration [Jia 18]. As the
authors pointed out, log placement was far beyond certain
rules. Therefore, the authors proposed an Intention Descrip-
tion Model to describe the intention of log statements for
a better log placement strategy. Similarly, Anu et al. also
adopted the concept of logging intention and then proposed
an automatic approach to assist decisions to appropriate log
level [Anu 19]. Nevertheless, as intangible as the concept
carries, intention is usually difficult to capture, communi-
cate, implement and verify. As a result, there are usually
many types of inconsistencies between the intention and the
actual log placement in practice [Rong 20].

Machine learning-based logging is an approach that
covers all the categories except why to log, proposed by
14 (25.0%) studies. These studies typically rely on various
machine learning techniques for predicting the location,
content, level of log statements or the necessity to make
revisions. In essence, the prediction is a binary or multi-
label classification problem, e.g., whether a log statement is
needed [Li 17b] or which level should be applied [Anu 19]
given the classification derived from various factors such
as the contexts of code snippet [Zhu 15] or the character-
istics (e.g., the number of variables, the number of exist-
ing log statements, etc.) of the source file containing log
statements [Li 17a]. For example, several studies [Zhu 15],

[Fu 14], [Kim 19] applied decision tree based algorithms
as the learning model/classifier. Random forest was also
one of the most commonly used classifiers for logging
prediction [Anu 19], [Li 17b], [Sain 16], [Kim 19]. Several
studies used multiple machine learning algorithms at the
same time, and further compared their performance to
find the best one. For example, Lal et al. adopted five
different machine learning algorithms (i.e. Adaboost, De-
cision Trees, Random Forest, Gaussian Naive Bayesian, K-
Nearest Neighbor) in their approaches [Lal 16c], [Lal 16b],
[Lal 19]. Moreover, in their further studies [Lal 17], [Lal 16a],
they proposed ensemble-based approaches to capturing the
strength of multiple base classifiers. Two studies [Sain 16],
[Kim 19] used support vector machine to recommend log
statements. In addition, deep learning [Ghol 20] and neural
networks [Liu 19] were also applied to logging prediction
for complicated multi-label classification tasks. Ordinal re-
gression model [Li 17a] was used when the number of labels
to the classification is small yet the relative ordering among
these labels is critical. One notable challenge of the machine
learning based approach is that the prediction performance
highly relies on the quality of the dataset used for model
training. Nevertheless, as implied in [Rong 18], [4], the
quality of logging practices is far from satisfactory in real-
world software projects. Therefore the quality of training
dataset (normally based on real-world software projects) is
often questionable.

Finding 3: Only about half of the studies proposed
concrete solution approaches to specific issues regard-
ing logging practices, mainly focusing on the categories
of where to log and what to log. Among them machine
learning-based logging has received the most attention.

5.4 Cross analysis (RQ4)

In this section, we aim to answer RQ4 by extending the
analysis of the extracted data to across different research
questions. Apparently, the current research work on logging
practices is anchored in issues. To this end, we detail RQ4
into three concrete Cross-Analysis Questions (CAQs) as
follows:

CAQ1: Are there trends or patterns in the investigation of
issues over the years?
CAQ2: Which research topics have received the most
attention in relation to different issues?

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2022.3166924, IEEE
Transactions on Software Engineering

14 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14, NO. 8, JANUARY 2021

CAQ3: Which approaches have addressed the most num-
ber of issues?

In the following, we present the findings from the cross
analysis.

5.4.1 Investigated issues over the years (CAQ1)

To portray a general status of the issues under investigation
over years, we list all the issues identified in Section 5.1
according to the year of publication. The result is shown
in Table 8, from which two points seem to be noteworthy.

Firstly, some of the hot issues in the recent years did not
attract enough attention in the early years. For example, PO
(Performance Overhead) and LCM (Lacking Crucial Mes-
sages) are two issues attracting significant and continuous
attention recently. One possible reason for this may lie in
that these two issues are the most direct issues in carrying
out logging practices, compared to other issues. With more
attention to logging practices, these two issues turn to be
increasingly prominent.

Secondly and more importantly, except for the LSD
(Leakage of Sensitive Data) and DVLS (Difficulties in V&V
of Log Statements) issues, all other issues raised in the
early years have been re-investigated several times in the
following years, which implies that they might not be well
addressed yet. Taking 2015 as a watershed, the most studied
issues before 2015 remain as the most investigated ones after
2015.

Finding 4: The major issues regarding logging prac-
tices have been continuously studied, implying these
issues are still yet to be completely solved. Findings
5–6 from further cross-analysis have nailed down the
major causes leading to this outcome. Besides, leakage
of sensitive data and difficulties in V&V of log statements
have been attracting researchers’ attention since 2019.

5.4.2 Issues and research topics (CAQ2)

The result from the cross analysis between the issues (cf. Sec-
tion 5.1) and the research topics (cf. Section 5.2) is presented
in Table 9. It is worth noting that the numbers outside
the parentheses denote the number of studies in which an
issue was discussed or addressed under a certain research
topic, while the percentage in the parentheses indicates the
corresponding proportion. We elaborate several interesting
observations as follows.

Firstly, from the issue’s perspective (i.e. horizontal view),
almost all issues appear across multiple research topics.
Among these issues, PO (Performance Overhead), LCM
(Lacking Crucial Messages), RUM (Redundant or Useless
Messages), IAM (Incorrect or Ambiguous Messages), HLM
(Heterogeneity of the Log Messages) and MB (Maintenance
Barriers) are covered by relatively more research topics.
Note that these are also the most investigated issues accord-
ing to the findings for RQ1.

Secondly, from the angle of research topic (i.e. vertical
view), we observe a similar pattern, i.e. nearly all research
topics cover multiple issues. For example, LIT (Logging
Intention), LLC (Log Location), LCS (Logging Cost), LCT

(Log Content), LLV (Log Level) and LEV (Log Evolution)
all investigate most of these issues.

The findings presented in Table 9 show that there are
many-to-many relationships between the issues and re-
search topics, which further imply that issues regarding
logging practices may be naturally entangled with each
other. Therefore, it is unlikely to rely solely on a single
research topic to address one issue at a time. A systematic
strategy which contains multiple aspects regarding logging
practices may be required to deal with the major issues.

Finding 5: There are a number of many-to-many re-
lationships between the issues and the research topics,
i.e. an issue appears in multiple research topics, and
a research topic attempts to address multiple issues.
Some of the issues even cover almost all topics, and
vice versa. This observation suggests a lack of profound
understanding of the issues and their intricate relation-
ships and how they should be appropriately tackled.

5.4.3 Issues and proposed approaches (CAQ3)

Similar to CAQ2, the evidence presented in Table 10 re-
veals the relationship between issues (cf. Section 5.1) and
approaches (cf. Section 5.3). Apparently, the observation
that one issue has multiple approaches and one approach
solves multiple issues also exists in Table 10. To be specific,
from the angle of issues, PO (Performance Overhead), LCM
(Lacking Crucial Messages), RUM (Redundant or Useless
Messages), IAM (Incorrect or Ambiguous Messages) and
HLM (Heterogeneity of the Log Messages) have all attracted
multiple studies with various approaches. On the other
hand, all the approaches are claimed to address multiple
issues, among which, MLBL (Machine Learning-Based Log-
ging) is claimed to solve more issues than other approaches
do. However, no specific approach has been proposed to
address the issues of LSD (Leakage of Sensitive Data) and
DVLS (Difficulties in V&V of Log Statements), which to a
certain degree implies the difficulty of solving these two
issues. The result listed in Table 10 confirms our conjec-
ture that there are no commonly accepted solutions to the
major issues in logging practices, given the fact that these
issues have been continuously studied in recent years. This
observation partially explains the low adoption of research
solutions by the industry.

Finding 6: Similar to Finding 5, the relationships
between the issues and the proposed approaches are
also mostly many-to-many, i.e. one approach is often
claimed to solve multiple issues and vice versa. This
again to a fair degree reflects an inadequate analysis of
the depth of an issue to be addressed, which inevitably
hinders tackling the issue at an appropriate granularity
and level. As a result, such a solution is generally far
from solving the intended issue and the existence of
multiple inadequate solutions makes it even harder to
adopt any one in practice.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2022.3166924, IEEE
Transactions on Software Engineering

SHENGHUI et al.: LOGGING PRACTICES IN SOFTWARE ENGINEERING: A SYSTEMATIC MAPPING STUDY 15

TABLE 8
Issues over years.

Year
Issue and corresponding
category

2004 2009 2010 2012 2013 2014 2015 2016 2017 2018 2019 2020

Where & What PO* 2 2 3 5 5 6 4 4
LCM* 1 1 4 1 1 1 4 4 7 5 6
RUM* 1 1 1 2 2 3 2 4 4 3
IAM* 1 1 2 1 1 1 2 3 1
HLM* 1 1 1 1 2 3

What

LSD* 3
MB* 1 1 1 1 2 1 1 2

How well DVLS* 1 1
* PO (Performance Overhead); LCM (Lacking Crucial Messages); RUM (Redundant or Useless Messages); IAM (Incorrect or Ambiguous Messages); HLM

(Heterogeneity of the Log Messages); LSD (Leakage of Sensitive Data); MB (Maintenance Barriers); DVLS (Difficulties in V&V of Log Statements).

TABLE 9
Issues versus research topics.

Topic and corresponding category
Issue and corre-
sponding category

Why Where Where
&What

What How Total

LIT† LLC† LCS† LCT† LLV† LSC† LEV† ALM† LAP† DLS†

Where &
What

PO* 3 (9.7%) 15
(48.4%)

5
(16.1%)

4
(12.9%)

3 (9.7%) 4
(12.9%)

1 (3.2%) 31
(100.0%)

LCM* 3 (8.6%) 19
(54.3%)

2 (5.7%) 6
(17.1%)

3 (8.6%) 4
(11.4%)

2 (5.7%) 1 (2.9%) 35
(100.0%)

RUM* 2 (8.7%) 9
(39.1%)

4
(17.4%)

5
(21.7%)

3
(13.0%)

3
(13.0%)

1 (4.3%) 23
(100.0%)

IAM* 2
(15.4%)

4
(30.8%)

1 (7.7%) 3
(23.1%)

1 (7.7%) 2
(15.4%)

2
(15.4%)

2
(15.4%)

1 (7.7%) 13
(100.0%)

HLM* 1
(11.1%)

3
(33.3%)

1
(11.1%)

5
(55.6%)

1
(11.1%)

2
(22.2%)

9
(100.0%)

What

LSD* 1
(33.3%)

1
(33.3%)

2
(66.7%)

3
(100.0%)

MB* 2
(20.0%)

2
(20.0%)

1
(10.0%)

6
(60.0%)

1
(10.0%)

1
(10.0%)

10
(100.0%)

How well DVLS* 1
(50.0%)

1
(50.0%)

2
(100.0%)

* The same as Table 8.
† LIT (Logging Intention); LLC (Log Location); LCS (Logging Cost); LCT (Log Content); LLV (Log Level); LSC (Logging Security); LEV (Log Evolution); ALM

(Assessment of Logging Mechanisms); LAP (Logging Anti-Pattern); DLS (Defects in Log Statements).

TABLE 10
Issues versus approaches.

Approach and corresponding category
Issue and corresponding
category

Where Where&What What Where&
What&How Total

RBL† SA† DL† ET† IBL† CF† MLBL†

Where &
What

PO* 3 (16.7%) 4 (22.2%) 1 (5.6%) 1 (5.6%) 1 (5.6%) 10 (55.6%) 18 (100.0%)

LCM* 4 (18.2%) 4 (18.2%) 3 (13.6%) 2 (9.1%) 1 (4.5%) 1 (4.5%) 9 (40.9%) 22 (100.0%)
RUM* 2 (15.4%) 1 (7.7%) 1 (7.7%) 1 (7.7%) 1 (7.7%) 2 (15.4%) 6 (46.2%) 13 (100.0%)
IAM* 2 (40.0%) 1 (20.0%) 1 (20.0%) 1 (20.0%) 5 (100.0%)
HLM* 1 (25.0%) 2 (50.0%) 1 (25.0%) 4 (100.0%)

What

LSD* 0 (0.0%)
MB* 1 (100.0%) 1 (100.0%)

How well DVLS* 0 (0.0%)
* The same as Table 8.
† RBL (Rule-Based Logging); SA (Static Analysis); DL (Dynamic Logging); ET (Entropy Theory); IBL (Intention-Based Logging); CF (Content Formatting); MLBL

(Machine Learning-Based Logging).

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2022.3166924, IEEE
Transactions on Software Engineering

16 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14, NO. 8, JANUARY 2021

6 DISCUSSIONS

In this section, we discuss possible reasons behind the
current status of the research and the adoption of logging
practices as well as several next-step considerations for
logging practices.

6.1 Research status and reason analysis
In essence, a log statement is quite similar to any business
statement in source code—they are both executable pro-
gram instructions. Both types of statements are supposed
to implement certain ‘requirements’, which will produce
a certain ‘result’ for their intended users later on. In a
typical scenario, the log statement usually generates logs
for internal users such as developers and maintainers while
regular business statements produce ‘results’ for external
end-users. Unlike coping with conventional coding for fea-
tures, which is significantly supported by the state-of-the-
art of SE, however, logging practices currently still lack a
systematic methodological support for practitioners based
on our observation derived from this SMS. We reckon there
are multiple reasons leading to the current status of logging
practices, among which “lack of research to address critical
issues”, “unrealistic expectation of general yet adaptable
solutions”, and “separated research within logging practices
and between logging practices and log analysis” may have
played an important role.

6.1.1 Lack of research to address critical issues
We noticed that most research effort has been invested
on the issues relating to the 2-W questions, essentially (if
not completely) neglecting two equally critical categories,
i.e. why to log and how well is logging.

According to the elaboration in Section 4, why to log an-
swers the I&Cs of logging practices, which should serve as
the starting point of logging practices. Unfortunately, very
little effort has been put onto identifying and addressing
issues in this important category. Just like regular software
development, lack of requirement analysis will inevitably
lead to deviations in software design and implementation.
Logging practice without proper clarification of I&Cs will
also lead to major gaps between the I&Cs and the actual
log statements in source code, which has been noticed and
reported in [Rong 20], [Li 20a]. More importantly, I&Cs are
the conceptual abstraction of why to log and usually used
to support communication among different participants re-
garding logging practices. An I&C is implemented via log
placement by translating to log location, content, and level.
Clearly, without properly understanding and analyzing the
true I&C, it is difficult to implement an appropriate log
placement that matches the context in source code. For this
reason, practitioners may encounter barriers to adopting a
logging approach or tool for log placement.

Similarly, the issues relating to the category of how well is
logging have not been well addressed by the current research
on logging practices. Like the importance of V&V in regu-
lar software development, without proper V&V in logging
practices, it is usually uncertain that log statements actually
reflect developer’s original I&Cs and capture the system
information needed for further analysis. As a result, log-
ging practices are inevitably subject to many questionable

log statements in actual source code. In fact, several stud-
ies have emphasized the importance of fulfilling logging
I&Cs [Yao 18], [Anu 19], [Jia 18], but none of them provided
concrete V&V mechanisms to ensure proper implementation
of logging I&Cs.

Given the current status elaborated above, a very inter-
esting analogy is that the state-of-the-art logging practices
are quite similar to the famous ‘Code and Fix’ software
development model in some sense. While it may work well
with software systems of small size, it will encounter huge
challenges to deal with large and complex software systems.
Similarly, typical scenarios of logging practices nowadays
always involve with large-scale software systems with com-
plex business logic. In this sense, it is not surprising that
logging practices are far from satisfactory in these software
systems [Rong 18], [4].

6.1.2 Unrealistic expectation for general yet adaptable so-
lutions
An ultimate goal of research on logging practices is to
provide guidance or assistance for software developers to
perform better logging practices. To achieve this goal, sev-
eral approaches and tools have been proposed. However, in
practice, it is extremely challenging or even unrealistic to
expect solutions that are generally applicable to all logging
practices yet they are adaptable enough to perform the best
in various specific contexts.

One example is the expectation of general-purpose
guidelines. Many studies have mentioned the importance to
have practical guidelines for logging practices [Chen 17a],
[Zhu 15], [He 18], [Liu 19], [Anu 19], [Liu 20], [Li 18a].
Not only is the academia committed to putting forward
such guidelines, but there are also similar requests in in-
dustry. For example, some popular blogs have discussed
the best or worst logging practices, e.g., [21], [22], which
could be taken as reference guidelines. Some world-leading
software companies have also introduced internal guide-
lines for logging practices, e.g., Alibaba [20]. Most of these
guidelines are so-called general-purpose guidelines which
guide logging practices without an explicit and specific I&C.
However, there is less chance to promote general-purpose
logging guidelines due to the vast variety of I&Cs. Take two
typical logging intentions as an example. Failure diagnosis
and performance analysis may require completely different
log placement. The logical branches in source code may
provide useful information for the former logging intention,
while the timestamps at the entries and exits of complicated
methods may support the latter logging intention better. In
this example, designing general-purpose logging guidelines
to satisfy both intentions might never be feasible.

Another example is the prevailed adoption of machine
learning techniques to support logging practices, which
involves more number studies than others (cf. Table 7).
The main idea is to learn the contexts/features of code
snippets and recommend log statements at code snippets
with similar contexts/features. The challenge is, however,
the efficacy of machine learning techniques largely depends
on the quality of the dataset used for training. If only
general-purpose log statements are included in the training
dataset, the trained models cannot support specific I&C,
i.e. there may be totally different log statements at the

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2022.3166924, IEEE
Transactions on Software Engineering

SHENGHUI et al.: LOGGING PRACTICES IN SOFTWARE ENGINEERING: A SYSTEMATIC MAPPING STUDY 17

exactly same location in the source code to meet different
I&Cs. It is worth noting that it is non-trivial to ensure the
quality of log placement in existing software systems in
the first place. We noticed that several studies proposed
methods for extracting I&Cs from source code [Anu 19],
[Jia 18]. This may bring some opportunities for better use
of machine learning techniques to support logging practices
as long as the I&Cs can be adequately learned and included
in the resulting models.

Although a certain log placement is commonly related
to specific and concrete contexts (e.g., I&Cs, structure/logic
of the code nearby), the specific contexts normally limit the
generality of a certain log placement in return. This is a
dilemma. On the one hand, we need a solution to logging
practices (e.g., general purpose guidelines) that is generally
applicable to as many contexts as possible. Otherwise, the
usage of the solution is inevitably constrained by the con-
texts. On the other hand, the more contexts involved, the
more unlikely to find a suitable log placement to address
various I&Cs for various specific contexts.

6.1.3 Separated research within logging practices and be-
tween logging practices and log analysis
It seems that the related research around logs, log placement
and subsequent log analysis are in a state of separation.
This has resulted in a situation in which research on how
to optimize log placement is rarely considered from the
perspective of what information is needed for log analysis.
On the contrary, in the related research on log analysis, most
of the research efforts have been spent on analysis and pro-
cessing algorithms using existing log data, researchers rarely
express concerns about the quality of the data source—log
placement. In short, there is a lack of positive interaction
between log placement and log analysis, which may be one
of the reasons for the current research status of logging prac-
tice. Take one of the most studied issue (i.e. performance
overhead) as an example, without information requirement
derived from the corresponding log analysis need, reason-
able trade-offs are inherently impossible to achieve.

Within logging practices, while the research topics and
the proposed approaches are concentrated on the 2-W ques-
tions, some key aspects regarding logging practices specially
around why and how well questions are essentially neglected.
This separation of research leads to the consequence that
some proposed approaches cannot be verified and validated
from the perspective of logging I&Cs. It is very desirable to
consider a holistic research approach that takes into account
all 3W1H aspects and the interaction between logging prac-
tices and logging analysis.

6.2 Next steps
The importance of logging practices in modern software
development and operations is undeniable. Therefore, we
discuss several promising next-step research in this subsec-
tion.

6.2.1 A process perspective for logging practices
Apparently, the chance is slim to solve the critical issues
regarding logging practices (as shown in Table 5) by solely
considering one or two categories. For example, performance

overhead is obviously a compromise between the benefit and
cost of logging, which can not be completely addressed
by merely answering the 2-W questions. Without knowing
specific information needs (perhaps derived from log anal-
ysis), the issue of lacking crucial messages is unlikely to be
addressed, and further all the issues relating to ‘messages’
may be subject to this observation. Therefore, we advocate a
process perspective for logging practices in which not only
is logging systematically considered from log generation to
log utilization but can logging issues be also holistically
investigated. For example, we may borrow the idea from
regular software development processes, given the essen-
tially similar paradigm to develop and maintain both log
statements and regular business statements. The concept of
Software Development Life Cycle (SDLC) [27] has already
taken shape in existing studies regarding logging practices.

For example, Jia et al. proposed an ‘intention’ description
model that is able to represent developer’s intentions of
log statements [Jia 18]. Based on the ‘intention’ description
model, they implemented an intention-aware log automa-
tion tool to insert log statements at proper places. An ‘in-
tention’ is similar to the concept of a requirement in SDLC.
Cinque et al. proposed a rule-based logging approach based
on the artifacts generated at the design stage [Cinq 12].
Zhao et al. proposed an algorithm to optimize the location
of log statements in source code based on information
theory [Zhao 17]. Kabinna et al. examined changes to log
statements in order to help developers instrument more
stable log statements [Kabi 16b]. The maintenance of log
statements was brought into the limelight. Nevertheless, to
close the loop, the value of V&V (i.e. how well is logging)
should be taken seriously in logging practices.

Moreover, apart from the process perspective, some com-
mon good practices in SE can also be useful to logging
practices due to the fact that log statements are source
code in essence. For example, several studies have real-
ized that conducting logging practices in a ‘Code and Fix’
fashion is problematic, and thus summarized a set of anti-
patterns [Chen 17a]. Along this thread, adapting the well-
known best practices in regular SE to logging practices may
also be a valuable research direction.

6.2.2 Recognizing the anchor value of I&C
The I&C of a log placement and its underlying context
should be taken as the starting point and also the anchor of
all logging practices. Without a clear answer to the why to log
question, it is hard to design and implement an appropriate
log placement, and all the downstream activities around
logging practices would become unrooted trees. Moreover,
as mentioned in [Li 20a], without a clear understanding of
developers’ logging I&Cs, automated approaches to logging
improvement may not be convincing to developers. In fact,
several studies have already raised the importance of log-
ging intention [Anu 19], [Jia 18] to support log placement.
However, a systematic approach to extracting, defining, and
representing multiple logging I&Cs, especially the real I&Cs
from relevant stakeholders, is still yet to be developed. One
good example is the pervasive DevOps approach in which
staff in charge of operations are encouraged to contribute
to the development of requirements from their perspec-
tives [28]. In the same spirit, consumers of the information

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2022.3166924, IEEE
Transactions on Software Engineering

18 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14, NO. 8, JANUARY 2021

contained in logs by means of log analysis should also play
a part in defining I&Cs for generating appropriate logs.

With the I&Cs clearly defined, the next question is how
to implement them through log placement. Compared to
current logging practices in which developers usually con-
sider log placement during coding [Cinq 09], [Pecc 15],
[Shan 14], we advocate a shift-left strategy for key logging
decisions. As suggested in [Shan 14], logging should be
thoroughly designed first rather than just deferred to the im-
plementation stage. However, although several approaches
have been proposed (cf. Fig. 8) to implement I&Cs in log
placement, the next-step research needs to explore how
to effectively reflect multiple I&Cs in log placement and
address I&Cs in multiple artifacts at different development
stages in a timely manner.

7 THREATS TO VALIDITY

This paper attempts to provide a systematic and compre-
hensive overview of the state-of-the-art logging practices in
SE, which is based on our review of 56 primary studies. In
this section, we discuss potential threats to the validity of
this study, the approaches by which we strived to mitigate
them, and other aspects that need to be taken into consid-
eration in order to generalize the results of this study. The
threats to validity are organized into four categories (i.e. the
Construct, Conclusion, Internal and External) as proposed
in [29].

7.1 Construct validity
Construct validity is concerned with the issues that to what
extent the object of study truly represents theory behind
the study [29]. In this study, the main treats related to this
validity are the suitability of research questions and the
schema for data extraction.

The suitability of research questions determines whether
the research objective can be addressed. To minimize the
threat derived from this factor, all the research questions are
designed based on the consensus through team discussion.
Meanwhile, using an iterative way, some trials have been
conducted for justification towards data extraction, evidence
answering research questions as well as research questions
addressing research objective. To this end, the threats related
to research questions could be minimized.

The rationality of research scope determines whether the
selected studies are able to provide appropriate information
to answer the research questions. We excluded the studies
focusing on log analysis in this systematic mapping study.
However, since useful information may also be extracted
from studies on log analysis to support logging practices
(as elaborated in Section 6.2.1, we acknowledge the impor-
tance of the information needs derived from log analysis),
the research scope in our study may inevitably leave out
some relevant studies. Nevertheless, as we have found that
the work reporting the impact of log analysis on logging
practices is generally scarce and further the setting of the
research scope is based on our previous experience [5] and
drawing on similar research [Yuan 12b], [He 18], [Kabi 16b],
the threat could be minimized.

The data extraction schema determines the quality of
the evidence we may obtain to answer research questions.

To mitigate this threat, we have applied a standard clas-
sification [10] and finalized the schema through several
optimization iterations.

7.2 Conclusion validity
Conclusion validity is a measure of the reasonable degree to
which a research conclusion could be trusted. For the sake
of reaching reasonable conclusions, we adopted a manual
coding approach described in Section 2.7 to assist data
synthesis. Nevertheless, this method inherently carries with
validity threats.

The categorization results guide the whole aggregation
and synthesis process and draw the major conclusions.
To mitigate the threat, each the primary study was peer
reviewed by at least two researchers and each finding
was derived from open discussion. Once a disagreement
emerges, a consensus has to be reached before further work.
In this way, the threat derived from categorization can be
controlled.

7.3 Internal validity
Internal validity is the extent to which a study establishes
a trustworthy cause-and-effect relationship between a treat-
ment and an outcome. To make sure that this SMS is repeat-
able, the search string, search engines, inclusion/exclusion
criteria and data extraction schema were cautiously de-
signed, carefully tuned and explicitly presented. In our
study, the main threats to the internal validity arise from the
limitation of the search string and search engines, as well as
personal bias in applying inclusion/exclusion criteria and
performing data extraction.

The limitation of the search string and search engines
may lead to an incomplete set of primary studies. Different
authors may use different terms to refer to a similar concept.
In order to mitigate the risk of incomplete retrieval of the
relevant studies, a formal search process has been designed
and followed, combining manual search, automated search
and snowballing, in an iterative manner. To control threats
due to search engines, we have included digital libraries
that are believed to be suitable depending on the existing
protocols [17]. Therefore, we consider our retrieval to be
nearly complete, and if any primary studies were missed,
that percentage would be negligible.

The personal bias may lead to subjective decisions oc-
curred during paper selection and data extraction. In order
to control the impacts, in the paper selection and data
extraction process, an iterative strategy has been applied
in the selection process in which the data extraction was
performed collaboratively by multiple reviewers with cross-
checking. Therefore, the threats derived from personal bias
can be mitigated.

7.4 External validity
External validity is concerned with to what extent the SMS
results can be generalized. One possible threat is related to
the degree to which the primary studies are representative
for the review topic.

Representativeness of the included primary studies is
critical in any SMS study. In order to mitigate this external

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2022.3166924, IEEE
Transactions on Software Engineering

SHENGHUI et al.: LOGGING PRACTICES IN SOFTWARE ENGINEERING: A SYSTEMATIC MAPPING STUDY 19

threats, the search process presented in Section 2.5 was
defined after several pilot searches and validated with open
discussion with all the researchers in this work. We argue
that the relevant primary studies in our final pool contain
sufficient information to represent the research topic dis-
cussed in this paper.

8 RELATED EMPIRICAL STUDIES

Logging practices have attracted increasing attention re-
cently. Therefore, some empirical research on logging prac-
tices has been conducted from various perspectives.

For instance, Yuan et al. investigated logging practices
using four pieces of large open source software, quantifying
the pervasiveness and the benefit of logging [Yuan 12b].
They identified several particular aspects in logging choices
where developers spend most efforts in getting them right,
as well as many opportunities for tools to improve the
logging practices. A large-scale replication study on similar
topics was reported in [Chen 17b] later to confirm these
findings.

In [Rong 18], Rong et al. focused on the quality of log-
ging practices in 28 popular open source projects on GitHub.
The researchers mined evidence from these projects, which
implied major issues in the logging practices in these
28 projects (e.g., very low and divergent density of log
statements, arbitrary location to put log statements), eas-
ily leading to questionable implementation of the logging
purpose—to capture the intended information of system
behaviors. Similarly, the empirical study conducted by
OverOps [4] also indicated these issues in logging practices.
Besides, the researchers also found a large portion of log
statements tended to contain insufficient variables to record
as much information as intended, indicating the low quality
of logging practices in the industry. Chen et al. characterized
six anti-patterns in log statements by carefully studying the
development history of three open source software systems
from different application domains [Chen 17a].

Besides these empirical studies, there are also a handful
of secondary studies attempting to portray the research and
adoption status of logging practices with a primary focus on
current logging practices, common challenges and proposed
solutions (cf. Table 11), which are elaborated below.

• As a pilot of this work, we have carried out a review on
logging practices [5] in 2017. However, due to page limits,
we did not discuss evidence and relevant implication in
detail.

• Sambasivan et al. carried out a survey on the tracing in-
frastructures for distributed systems and distilled the design
space of workflow-centric tracing and described key design
choices [6]. However, this study focuses on the building of
logging infrastructure, which according to the discussion
in Section 2.2 falls outside the scope of this SMS.

• Cândido et al. also conducted an SMS on log-based
software monitoring [7]. However, the topic of ‘logging
practice’ is only one out of four research focuses in this
study, as a result, very limited insights into logging practices
are provided by this study.

• A most recent survey study conducted by Chen et
al. [2] also reviewed software log instrumentation, a con-
cept similar to logging practices in our work. The major

differences between Chen’s work and ours are three-fold.
First and foremost, the two studies carry with different
research objectives. While Chen’s work is focused on iden-
tifying the challenges and the proposed solutions used in
log instrumentation, our focus is on unveiling possible
problems and gaps which further shed light on the potential
future research directions by establishing a comprehensive
understanding of the research status of logging practices.
Second, due to different research objectives, the two studies
have also adopted different research methods. While both
work use thematic analysis and qualitative methods to
identify challenges and solutions, we additionally apply
a quantitative method to depict a research landscape of
current logging practices and more importantly a cross-
analysis method to unveil the gaps between challenges and
solutions. The findings (Findings 1–6) with these methods
extend our understanding of the state-of-the-art research
of logging practices. Last but not least, although the two
studies use a similar dataset (i.e. selected literature) for final
synthesis, our work identified nine additional high quality
studies not included in Chen’s work, most of which have
been published on premier venues in their respective fields,
e.g., [Li 20a], [Anu 19], [Li 20b], [Luo 18], [Pecc 12], etc. As a
result, our work identified several critical issues/challenges
regarding logging practices not in Chen’s paper. For ex-
ample, “Redundant or useless messages”, reported by 9
primary studies, were not discussed in Chen’s work, as
this issue may inevitably impact developer’s capability to
perform failure diagnosis or performance analysis, which is
listed in Chen’s work as one major challenge category.

In summary, existing studies have exposed the chal-
lenges/solutions of logging practices from different per-
spectives, which means the challenges with which devel-
opers are confronted when conducting logging practices are
well known in the community. However, a holistic under-
standing of the research state of logging practices is yet to
be established, which is the major motive for our work. It
is worth highlighting the major contributions of our work
as compared to the other secondary studies, which are: (1)
we portray a profound research state landscape of logging
practices in terms of issues, research focuses and solution
approaches using 3W1H categorization scheme through a
systematic mapping study; (2) we pinpoint the gaps between
challenges and solutions and suggest potential remedies
and future research directions to close the loop through
cross-analysis.

9 FINAL REMARKS

Logging is an important task of software development
and in recent years research on logging practices has been
steadily increasing. However, not quite aligned with this
trend, adoption of the proposed approaches and solutions
by the software industry remains low. In this paper, we have
presented the results of an SMS on logging practices from
56 primary studies in order to paint a landscape of the state-
of-the-art of logging practices for a holistic understanding
of this research area.

The main observations from this study can be summa-
rized as follows:

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2022.3166924, IEEE
Transactions on Software Engineering

20 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14, NO. 8, JANUARY 2021

TABLE 11
Comparison against other reviews related to logging practices.

Authors Focus Year PC OC A B C D E

Sambasivan et al. [6] To build workflow-centric tracing infrastructures for distributed systems 2016 N/A N/A ✓

Rong et al. [5] Occasions where logging practices are needed, challenges, current state-of-the-
art, and future research directions of logging practices

2017 41 10 ✓ ✓ ✓ ○

Cândido et al. [7] (pre-
vious work [30])

To present the research focus, opportunities, and directions on log-based software
monitoring, in which the logging practice is only one of the three topics beside
log infrastructure and log analysis.

2021 108 19 ✓ ○

Chen et al. [2] Techniques, challenges, and possible solutions of conventional logging, rule-
based logging, and distributed tracing

2021 69 34 ✓ ✓

This study Issues, research topics, proposed approaches, and gap areas regarding the re-
search on logging practices

2021 56 N/A ✓ ✓ ✓ ✓

* PC: Peer-reviewed literature count; OC: Overlapping peer-reviewed literature count with other reviews;
A: Did the study include issues regarding logging practices? B: Did the study include research topics around logging practices? C: Did the study include proposed
approaches for logging practices? D: Did the study quantitatively analyze the research focus on issues, research topics, proposed approaches and the relationships
between them? E: Did the study identify gaps in current research on logging practices? [N/A]: Not applicable;
✓ Issues, research topics, proposed approaches and gap areas are addressed directly through research questions in the study;
✓ Issues, research topics, proposed approaches and gap areas are addressed partially through other research questions in the study (i.e. by addressing a different
research question, partial information is provided).
 Quantitative analysis is applied to every aspects of issues, research topics, proposed approaches and gap areas.
○ Quantitative analysis is applied to some aspects of issues, research topics, proposed approaches and gap areas.

Firstly, there is some consensus on the major issues
in logging practices. However, even the issues that have
received the most attention are still being discussed and
explored repeatedly, implying that the proposed solutions
are yet workable as expected.

Secondly, based on the distribution of issues, research
topics, and approaches, the 2-W questions are still the fo-
cus of common concern. However, only addressing the 2-
W questions without considering other questions may has
clear limitations. Therefore, research to identify and address
the issues relating to the categories of why to log and how
well is the logging should be encouraged in the community.

Last but not least, the many-to-many relationships be-
tween issues, research topics and approaches indicate a lack
of profound understanding of the real issues and how they
should be appropriately tackled.

The value of our SMS is not only limited to showing pos-
sible solutions to the issues/challenges of logging practices,
which are also discussed in several existing secondary stud-
ies to some extent. A more significant contribution of this
SMS lies in that it reveals the current problems and omis-
sions in the research related to logging practices. If these
problems are not adequately concerned and addressed, the
status quo of research on logging practices will likely remain
unchanged.

Based on the results of this study, we make the following
recommendations:

• As the starting point of logging practices and the anchor
point of downstream logging practices, logging I&Cs
should be given with full attention. The source (e.g.,
information needs derived from log analysis), perfor-
mance overhead limits (e.g., derived from regular sys-
tem requirements) and other contextual factors should
be clarified before carrying out logging practices. For
this purpose, research effort is demanded to explore
pragmatic practices, methods and tools.

• A process perspective and a holistic approach should
be considered to propose more effective solutions to
logging practices, which means that the current re-

search direction and focus need to be adjusted. For
example, the 2-W questions should not be investigated
and addressed separately and also without considering
other questions. Proposed solutions should not only
implement I&Cs but also verify and validate them by
downstream practices. In short, the practices, methods
and tools for planning, designing, producing, analyzing
and consuming logs should be studied in a systematic
manner.

• With DevOps becoming the mainstream method of soft-
ware development, operations and maintenance [31],
the use of tools to improve the level of automation
becomes an apparent need that has to be considered,
but how to design tools to meet the basic requirements
of the above two points calls for further research efforts.

ACKNOWLEDGMENTS

This work is supported by the National Natural Science
Foundation of China (No.62072227, No.61802173), the Na-
tional Key Research and Development Program of China
(No.2019YFE0105500) jointly with the Research Council of
Norway (No.309494), the Key Research and Development
Program of Jiangsu Province (No.BE2021002-2), as well
as the Intergovernmental Bilateral Innovation Project of
Jiangsu Province (No.BZ2020017).

REFERENCES

[1] B. Fitzgerald and K.-J. Stol, “Continuous software engineering: A
roadmap and agenda,” Journal of Systems and Software, vol. 123, pp.
176–189, Jan. 2017.

[2] B. Chen and Z. M. J. Jiang, “A survey of software log
instrumentation,” ACM Computing Surveys (CSUR), vol. 54, no. 4,
pp. 1—-34, Jul. 2021. [Online]. Available: http://dx.doi.org/10.
1145/3448976

[3] B. W. Kernighan and R. Pike, The practice of programming.
Addison-Wesley Professional, 1999.

[4] OverOps, “The complete guide to Java logging in
production,” 2017. [Online]. Available: https://land.overops.
com/java-logging-in-production-ebook/

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2022.3166924, IEEE
Transactions on Software Engineering

SHENGHUI et al.: LOGGING PRACTICES IN SOFTWARE ENGINEERING: A SYSTEMATIC MAPPING STUDY 21

[5] G. Rong, Q. Zhang, X. Liu, and S. Gu, “A systematic
review of logging practice in software engineering,” in
2017 24th Asia-Pacific Software Engineering Conference (APSEC
’17). IEEE, Dec. 2017, pp. 534–539. [Online]. Available:
http://dx.doi.org/10.1109/APSEC.2017.61

[6] R. R. Sambasivan, I. Shafer, J. Mace, B. H. Sigelman, R. Fonseca,
and G. R. Ganger, “Principled workflow-centric tracing of
distributed systems,” in Proceedings of the Seventh ACM Symposium
on Cloud Computing. ACM, Oct. 2016, pp. 401–414. [Online].
Available: http://dx.doi.org/10.1145/2987550.2987568

[7] J. Cândido, M. Aniche, and A. van Deursen, “Log-based
software monitoring: A systematic mapping study,” PeerJ
Computer Science, vol. 7, p. e489, 2021. [Online]. Available:
https://doi.org/10.7717/peerj-cs.489

[8] V. R. Basili, “Goal question metric paradigm,” Encyclopedia of
software engineering, pp. 528–532, 1994.

[9] K. Petersen, S. Vakkalanka, and L. Kuzniarz, “Guidelines for
conducting systematic mapping studies in software engineering:
An update,” Information and Software Technology, vol. 64, pp.
1–18, Aug. 2015. [Online]. Available: http://dx.doi.org/10.1016/j.
infsof.2015.03.007

[10] K. Petersen, R. Feldt, S. Mujtaba, and M. Mattsson, “Systematic
mapping studies in software engineering,” in 12th International
Conference on Evaluation and Assessment in Software Engineering
(EASE ’08). BCS Learning & Development, Jun. 2008, pp. 1–10.
[Online]. Available: https://doi.org/10.14236/ewic/ease2008.8

[11] B. Kitchenham, “What’s up with software metrics? - a
preliminary mapping study,” Journal of Systems and Software,
vol. 83, no. 1, pp. 37–51, Jan. 2010. [Online]. Available:
http://dx.doi.org/10.1016/j.jss.2009.06.041

[12] B. Kitchenham, R. Pretorius, D. Budgen, O. P. Brereton, M. Turner,
M. Niazi, and S. Linkman, “Systematic literature reviews in
software engineering - a tertiary study,” Information and Software
Technology, vol. 52, no. 8, pp. 792–805, Aug. 2010. [Online].
Available: http://dx.doi.org/10.1016/j.infsof.2010.03.006

[13] A. A. Yavuz and P. Ning, “BAF: An efficient publicly verifiable
secure audit logging scheme for distributed systems,” in 2009
Annual Computer Security Applications Conference. IEEE, 2009, pp.
219–228.

[14] D. Kim, E. Hwang, and S. Rho, “Multi-camera-based security
log management scheme for smart surveillance,” Security and
Communication Networks, vol. 7, no. 10, pp. 1517–1527, 2014.

[15] B. A. Kitchenham and S. Charters, “Guidelines for performing
systematic literature reviews in software engineering,” Technical
Report EBSE 2007-001. Keele University and Durham University Joint
Report, pp. 1–57, Jul. 2007.

[16] B. A. Kitchenham, “Procedures for performing systematic re-
views,” Keele, UK, Keele University, vol. 33, no. 2004, pp. 1–26, Jul.
2004.

[17] H. Zhang, M. A. Babar, and P. Tell, “Identifying relevant studies
in software engineering,” Information and Software Technology,
vol. 53, no. 6, pp. 625–637, Jun. 2011. [Online]. Available:
https://doi.org/10.1016/j.infsof.2010.12.010

[18] V. Braun and V. Clarke, “Using thematic analysis in psychology,”
Qualitative Research in Psychology, vol. 3, no. 2, pp. 77–101, 2006.
[Online]. Available: https://doi.org/10.1191/1478088706qp063oa

[19] J. Saldaña, The Coding Manual for Qualitative Researchers. Sage,
2021.

[20] Alibaba. (2017) Alibaba Java coding guide-
lines. [Online]. Available: https://alibaba.github.io/
Alibaba-Java-Coding-Guidelines/

[21] J. Skowronski. (2017, Jan.) 30 best practices for logging
at scale. [Online]. Available: https://www.loggly.com/blog/
30-best-practices-logging-scale/

[22] L. Tal. (2017, Jan.) 9 logging best practices
based on hands-on experience. [Online]. Avail-
able: https://www.loomsystems.com/blog/single-post/2017/
01/26/9-logging-best-practices-based-on-hands-on-experience

[23] J. Boulon, A. Konwinski, R. Qi, A. Rabkin, E. Yang, and M. Yang,
“Chukwa: A large-scale monitoring system,” in Proceedings of
CCA, vol. 8, 2008, pp. 1–5.

[24] G. F. Creţu-Ciocârlie, M. Budiu, and M. Goldszmidt, “Hunting
for problems with Artemis,” in Proceedings of the First USENIX
conference on Analysis of system logs. USENIX Association, 2008,
pp. 2–2.

[25] H. Mi, H. Wang, Y. Zhou, M. R.-T. Lyu, and H. Cai, “Toward fine-
grained, unsupervised, scalable performance diagnosis for pro-

duction cloud computing systems,” IEEE Transactions on Parallel
and Distributed Systems, vol. 24, no. 6, pp. 1245–1255, Jun. 2013.

[26] A. Aiken, S. Bugrara, I. Dillig, T. Dillig, B. Hackett, and
P. Hawkins, “An overview of the Saturn project,” in Proceedings
of the 7th ACM SIGPLAN-SIGSOFT workshop on Program analysis
for software tools and engineering (PASTE ’07), Jun. 2007, pp. 43–48.
[Online]. Available: https://doi.org/10.1145/1251535.1251543

[27] W. W. Royce, “Managing the development of large software sys-
tems: Concepts and techniques,” in Proceedings of the 9th interna-
tional conference on Software Engineering, Mar. 1987, pp. 328–338.

[28] C. A. Cois, J. Yankel, and A. Connell, “Modern DevOps:
Optimizing software development through effective system
interactions,” in 2014 IEEE International Professional Communication
Conference (IPCC). IEEE, oct 2014, pp. 1–7. [Online]. Available:
https://doi.org/10.1109%2Fipcc.2014.7020388

[29] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and
A. Wesslén, Experimentation in Software Engineering. Springer
Science & Business Media, Jun. 2012.

[30] J. Cândido, M. Aniche, and A. van Deursen, “Contemporary soft-
ware monitoring: A systematic literature review,” arXiv preprint
arXiv:1912.05878, Dec. 2019.

[31] Puppet, “The 2021 state of DevOps report,” 2021.
[Online]. Available: https://puppet.com/resources/report/
2021-state-of-devops-report/

[32] W. Xu, L. Huang, A. Fox, D. Patterson, and M. I. Jordan,
“Detecting large-scale system problems by mining console
logs,” in Proceedings of the ACM SIGOPS 22nd symposium
on Operating systems principles (SOSP’ 09). New York, NY,
USA: ACM, Oct. 2009, pp. 117–132. [Online]. Available:
https://doi.org/10.1145/1629575.1629587

[33] D. Yuan, H. Mai, W. Xiong, L. Tan, Y. Zhou, and S. Pasupathy,
“SherLog: Error diagnosis by connecting clues from run-time
logs,” in Proceedings of the fifteenth edition of ASPLOS on
Architectural support for programming languages and operating
systems (ASPLOS ’10). ACM, Mar. 2010, pp. 143–154. [Online].
Available: https://doi.org/10.1145/1736020.1736038

[34] W. Shang, “Bridging the divide between software developers and
operators using logs,” in 2012 34th International Conference on
Software Engineering (ICSE ’12). IEEE, Jun. 2012, pp. 1583–1586.
[Online]. Available: https://doi.org/10.1109/icse.2012.6227031

[35] T. Barik, R. DeLine, S. Drucker, and D. Fisher, “The bones of
the system: A case study of logging and telemetry at Microsoft,”
in Proceedings of the 38th International Conference on Software
Engineering Companion (ICSE-C ’16). IEEE, May 2016, pp. 92–101.
[Online]. Available: https://doi.org/10.1145/2889160.2889231

[36] W. Shang, M. Nagappan, A. E. Hassan, and Z. M. Jiang,
“Understanding log lines using development knowledge,” in
2014 IEEE International Conference on Software Maintenance and
Evolution (ICSME ’14). IEEE, Sep. 2014, pp. 21–30. [Online].
Available: https://doi.org/10.1109/icsme.2014.24

[37] M. I. H. Sukmana, K. A. Torkura, F. Cheng, C. Meinel,
and H. Graupner, “Unified logging system for monitoring
multiple cloud storage providers in cloud storage broker,”
in 2018 International Conference on Information Networking
(ICOIN ’18). IEEE, Jan. 2018, pp. 44–49. [Online]. Available:
https://doi.org/10.1109/icoin.2018.8343081

[38] A. Pi, W. Chen, W. Zeller, and X. Zhou, “It can understand the
logs, literally,” in 2019 IEEE International Parallel and Distributed
Processing Symposium Workshops (IPDPSW ’19). IEEE, May 2019,
pp. 446–451.

[39] D. Schipper, M. Aniche, and A. van Deursen, “Tracing back log
data to its log statement: From research to practice,” in 2019
IEEE/ACM 16th International Conference on Mining Software Reposi-
tories (MSR ’19). IEEE, May 2019, pp. 545–549.

[40] M. Bartsch and R. Harrison, “An exploratory study of the effect
of aspect-oriented programming on maintainability,” Software
Quality Journal, vol. 16, no. 1, pp. 23–44, May 2007. [Online].
Available: https://doi.org/10.1007/s11219-007-9022-7

[41] G. W. Dunlap, S. T. King, S. Cinar, M. A. Basrai, and P. M. Chen,
“Revirt: Enabling intrusion analysis through virtual-machine log-
ging and replay,” ACM SIGOPS Operating Systems Review, vol. 36,
no. SI, pp. 211–224, 2002.

[42] C. N. Chong, Z. Peng, and P. H. Hartel, “Secure audit logging
with tamper-resistant hardware,” in IFIP International Information
Security Conference. Springer, May 2003, pp. 73–84.

[43] P. Massonet, S. Naqvi, C. Ponsard, J. Latanicki, B. Rochwerger, and
M. Villari, “A monitoring and audit logging architecture for data

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2022.3166924, IEEE
Transactions on Software Engineering

22 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14, NO. 8, JANUARY 2021

location compliance in federated cloud infrastructures,” in 2011
IEEE International Symposium on Parallel and Distributed Processing
Workshops and Phd Forum. IEEE, May 2011, pp. 1510–1517.

[44] J. King, J. Stallings, M. Riaz, and L. Williams, “To log, or not to
log: using heuristics to identify mandatory log events–a controlled
experiment,” Empirical Software Engineering, vol. 22, no. 5, pp.
2684–2717, Oct. 2017.

[45] G. S. Hartman and L. Bass, “Logging events crossing architectural
boundaries,” in IFIP Conference on Human-Computer Interaction.
Springer, Sep. 2005, pp. 823–834.

[46] G. Lee, J. Lin, C. Liu, A. Lorek, and D. Ryaboy, “The unified
logging infrastructure for data analytics at Twitter,” Proceedings
of the VLDB Endowment, vol. 5, no. 12, pp. 1771–1780, Aug. 2012.

[47] A. Rabkin, W. Xu, A. Wildani, A. Fox, D. Patterson, and R. Katz,
“A graphical representation for identifier structure in logs,” in
Proceedings of the 2010 workshop on Managing systems via log analysis
and machine learning techniques (SLAML ’10). ACM, Oct. 2010, pp.
3–3.

[48] W. Shang, M. Nagappan, and A. E. Hassan, “Studying the
relationship between logging characteristics and the code
quality of platform software,” Empirical Software Engineering,
vol. 20, no. 1, pp. 1–27, Feb. 2015. [Online]. Available:
https://doi.org/10.1007/s10664-013-9274-8

[49] A. Kadav, M. J. Renzelmann, and M. M. Swift, “Tolerating hard-
ware device failures in software,” in Proceedings of the ACM
SIGOPS 22nd symposium on Operating systems principles. ACM,
2009, pp. 59–72.

[50] D. Subhraveti and J. Nieh, “Record and transplay: Partial check-
pointing for replay debugging across heterogeneous systems,” in
Proceedings of the ACM SIGMETRICS joint international conference
on Measurement and modeling of computer systems. ACM, 2011, pp.
109–120.

[51] K. Veeraraghavan, D. Lee, B. Wester, J. Ouyang, P. M. Chen,
J. Flinn, and S. Narayanasamy, “Doubleplay: Parallelizing sequen-
tial logging and replay,” ACM Transactions on Computer Systems
(TOCS), vol. 30, no. 1, p. 3, 2012.

[52] M. Cinque, R. Natella, A. Pecchia, S. Russo, C.-I. Laboratorio,
C. Savy, and C. U. M. Sant’Angelo, “Improving ffda of web servers
through a rule-based logging approach,” in Proceedings of the 1st
International Workshop on Field Failure Data Analysis, Niagara Falls,
NY, USA, 2008.

[53] T. Jia, Y. Li, C. Zhang, W. Xia, J. Jiang, and Y. Liu,
“Machine deserves better logging: A log enhancement approach
for automatic fault diagnosis,” in 2018 IEEE International
Symposium on Software Reliability Engineering Workshops (ISSREW
’18), Oct. 2018, pp. 106–111. [Online]. Available: https:
//doi.org/10.1109/issrew.2018.00-22

[54] C. Zhang, Z. Guo, M. Wu, L. Lu, Y. Fan, J. Zhao, and
Z. Zhang, “AutoLog: Facing log redundancy and insufficiency,”
in Proceedings of the Second Asia-Pacific Workshop on Systems
(APSys ’11), Jul. 2011, pp. 1–5. [Online]. Available: https:
//doi.org/10.1145/2103799.2103811

[55] X. Zhao, K. Rodrigues, Y. Luo, M. Stumm, D. Yuan, and Y. Zhou,
“The game of twenty questions: Do you know where to log?” in
Proceedings of the 16th Workshop on Hot Topics in Operating Systems
(HotOS ’17). ACM, May 2017, pp. 125–131. [Online]. Available:
https://doi.org/10.1145/3102980.3103001

[56] F. Baccanico, G. Carrozza, M. Cinque, D. Cotroneo, A. Pecchia,
and A. Savignano, “Event logging in an industrial development
process: Practices and reengineering challenges,” in 2014
IEEE International Symposium on Software Reliability Engineering
Workshops (ISSRE Workshops). IEEE, Nov. 2014, pp. 10–13.
[Online]. Available: https://doi.org/10.1109/issrew.2014.69

[57] B. Chen, “Improving the software logging practices in
DevOps,” in 2019 IEEE/ACM 41st International Conference on
Software Engineering: Companion Proceedings (ICSE-Companion).
IEEE, May 2019, pp. 194–197. [Online]. Available: https:
//doi.org/10.1109/icse-companion.2019.00080

APPENDIX A
SELECTED PRIMARY STUDIES

[Anu 19] H. Anu, J. Chen, W. Shi, J. Hou, B. Liang, and B. Qin.
“An Approach to Recommendation of Verbosity Log Levels

Based on Logging Intention”. In: 2019 IEEE International
Conference on Software Maintenance and Evolution (ICSME
’19), pp. 125–134, IEEE, Sep. 2019.

[Chen 17a] B. Chen and Z. M. Jiang. “Characterizing and Detecting
Anti-Patterns in the Logging Code”. In: 2017 IEEE/ACM
39th International Conference on Software Engineering (ICSE
’17), pp. 71–81, IEEE, May 2017.

[Chen 17b] B. Chen and Z. M. J. Jiang. “Characterizing Logging
Practices in Java-Based Open Source Software Projects –
A Replication Study in Apache Software Foundation”. Em-
pirical Software Engineering, Vol. 22, No. 1, pp. 330–374, Feb.
2017.

[Chen 19] B. Chen and Z. M. Jiang. “Extracting and Studying the
Logging-Code-Issue-Introducing Changes in Java-Based
Large-Scale Open Source Software Systems”. Empirical
Software Engineering, Vol. 24, No. 4, pp. 2285–2322, Aug.
2019.

[Chen 20] B. Chen and Z. M. J. Jiang. “Studying the Use of Java Log-
ging Utilities in the Wild”. In: Proceedings of the ACM/IEEE
42nd International Conference on Software Engineering (ICSE
’20), pp. 397–408, Oct. 2020.

[Chow 18] S. Chowdhury, S. D. Nardo, A. Hindle, and Z. M. Jiang.
“An Exploratory Study on Assessing the Energy Impact
of Logging on Android Applications”. Empirical Software
Engineering, Vol. 23, No. 3, pp. 1422–1456, June 2018.

[Cinq 09] M. Cinque, D. Cotroneo, and A. Pecchia. “A Logging
Approach for Effective Dependability Evaluation of Com-
plex Systems”. In: 2009 Second International Conference on
Dependability (DEPEND ’09), pp. 105–110, IEEE, June 2009.

[Cinq 10] M. Cinque, D. Cotroneo, R. Natella, and A. Pecchia. “As-
sessing and Improving the Effectiveness of Logs for the
Analysis of Software Faults”. In: 2010 IEEE/IFIP Interna-
tional Conference on Dependable Systems & Networks (DSN
’10), pp. 457–466, IEEE, June 2010.

[Cinq 12] M. Cinque, D. Cotroneo, and A. Pecchia. “Event Logs
for the Analysis of Software Failures: A Rule-Based Ap-
proach”. IEEE Transactions on Software Engineering, Vol. 39,
No. 6, pp. 806–821, Oct. 2012.

[Cinq 20] M. Cinque, R. D. Corte, and A. Pecchia. “An empirical
analysis of error propagation in critical software systems”.
Empirical Software Engineering, Vol. 25, No. 4, pp. 2450–2484,
March 2020.

[Ding 15] R. Ding, H. Zhou, J.-G. Lou, H. Zhang, Q. Lin, Q. Fu,
D. Zhang, and T. Xie. “Log2: A Cost-Aware Logging
Mechanism for Performance Diagnosis”. In: 2015 USENIX
Annual Technical Conference (USENIX ATC ’15), pp. 139–150,
USENIX Association, Santa Clara, CA, July 2015.

[Fu 14] Q. Fu, J. Zhu, W. Hu, J.-G. Lou, R. Ding, Q. Lin, D. Zhang,
and T. Xie. “Where Do Developers Log? An Empirical
Study on Logging Practices in Industry”. In: Companion
Proceedings of the 36th International Conference on Software
Engineering (ICSE-Companion ’14), pp. 24–33, ACM, New
York, NY, USA, May 2014.

[Ghol 20] S. Gholamian and P. A. S. Ward. “Logging Statements’
Prediction Based on Source Code Clones”. In: Proceedings
of the 35th Annual ACM Symposium on Applied Computing
(SAC ’20), pp. 82–91, ACM, March 2020.

[Hass 18] M. Hassani, W. Shang, E. Shihab, and N. Tsantalis. “Study-
ing and Detecting Log-Related Issues”. Empirical Software
Engineering, Vol. 23, No. 6, pp. 3248–3280, March 2018.

[He 18] P. He, Z. Chen, S. He, and M. R. Lyu. “Characterizing
the Natural Language Descriptions in Software Logging
Statements”. In: Proceedings of the 33rd ACM/IEEE Inter-
national Conference on Automated Software Engineering (ASE
’18), pp. 178–189, ACM, Sep. 2018.

[Jia 18] Z. Jia, S. Li, X. Liu, X. Liao, and Y. Liu. “SMARTLOG:
Place Error Log Statement by Deep Understanding of Log
Intention”. In: 2018 IEEE 25th International Conference on
Software Analysis, Evolution and Reengineering (SANER ’18),
pp. 61–71, IEEE, March 2018.

[Kabi 16a] S. Kabinna, C.-P. Bezemer, W. Shang, and A. E. Hassan.
“Logging Library Migrations: A Case Study for the Apache
Software Foundation Projects”. In: Proceedings of the 13th
International Workshop on Mining Software Repositories (MSR
’16), pp. 154–164, ACM, May 2016.

[Kabi 16b] S. Kabinna, W. Shang, C.-P. Bezemer, and A. E. Hassan.
“Examining the Stability of Logging Statements”. In: 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2022.3166924, IEEE
Transactions on Software Engineering

SHENGHUI et al.: LOGGING PRACTICES IN SOFTWARE ENGINEERING: A SYSTEMATIC MAPPING STUDY 23

IEEE 23rd International Conference on Software Analysis, Evo-
lution, and Reengineering (SANER ’16), pp. 326–337, IEEE,
March 2016.

[Kim 19] T. Kim, S. Kim, S. Park, and Y. Park. “Automatic Recom-
mendation to Appropriate Log Levels”. Software: Practice
and Experience, Vol. 50, No. 3, pp. 189–209, Nov. 2019.

[Kubo 20] T. Kubota, N. Aota, and K. Kono. “Logging Inter-Thread
Data Dependencies in Linux Kernel”. IEICE Transactions on
Information and Systems, Vol. E103.D, No. 7, pp. 1633–1646,
July 2020.

[Lal 15] S. Lal, N. Sardana, and A. Sureka. “Two Level Empirical
Study of Logging Statements in Open Source Java Projects”.
International Journal of Open Source Software and Processes
(IJOSSP ’15), Vol. 6, No. 1, pp. 49–73, Jan. 2015.

[Lal 16a] S. Lal, N. Sardana, and A. Sureka. “Improving Logging
Prediction on Imbalanced Datasets: A Case Study on Open
Source Java Projects”. International Journal of Open Source
Software and Processes (IJOSSP ’16), Vol. 7, No. 2, pp. 43–71,
Apr. 2016.

[Lal 16b] S. Lal, N. Sardana, and A. Sureka. “LogOptPlus: Learning
to Optimize Logging in Catch and If Programming Con-
structs”. In: 2016 IEEE 40th Annual Computer Software and
Applications Conference (COMPSAC ’16), pp. 215–220, IEEE,
June 2016.

[Lal 16c] S. Lal and A. Sureka. “LogOpt: Static Feature Extraction
from Source Code for Automated Catch Block Logging Pre-
diction”. In: Proceedings of the 9th India Software Engineering
Conference (ISEC ’16), pp. 151–155, ACM, Feb. 2016.

[Lal 17] S. Lal, N. Sardana, and A. Sureka. “ECLogger: Cross-
Project Catch-Block Logging Prediction Using Ensemble
of Classifiers”. e-Informatica Software Engineering Journal,
Vol. 11, No. 1, pp. 7–38, 2017.

[Lal 19] S. Lal, N. Sardana, and A. Sureka. “Three-Level Learn-
ing for Improving Cross-Project Logging Prediction for If-
Blocks”. Journal of King Saud University - Computer and
Information Sciences, Vol. 31, No. 4, pp. 481–496, Oct. 2019.

[Li 17a] H. Li, W. Shang, and A. E. Hassan. “Which Log Level
Should Developers Choose for a New Logging State-
ment?”. Empirical Software Engineering, Vol. 22, No. 4,
pp. 1684–1716, Aug. 2017.

[Li 17b] H. Li, W. Shang, Y. Zou, and A. E. Hassan. “Towards Just-
in-Time Suggestions for Log Changes”. Empirical Software
Engineering, Vol. 22, No. 4, pp. 1831–1865, Aug. 2017.

[Li 18a] H. Li, T.-H. P. Chen, W. Shang, and A. E. Hassan. “Studying
Software Logging Using Topic Models”. Empirical Software
Engineering, Vol. 23, No. 5, pp. 2655–2694, Oct. 2018.

[Li 18b] S. Li, X. Niu, Z. Jia, J. Wang, H. He, and T. Wang. “Log-
Tracker: Learning Log Revision Behaviors Proactively from
Software Evolution History”. In: Proceedings of the 26th
Conference on Program Comprehension (ICPC ’18), pp. 178–
188, ACM, May 2018.

[Li 19] Z. Li, T.-H. Chen, J. Yang, and W. Shang. “DLFinder: Char-
acterizing and Detecting Duplicate Logging Code Smells”.
In: 2019 IEEE/ACM 41st International Conference on Software
Engineering (ICSE ’19), pp. 152–163, IEEE, May 2019.

[Li 20a] H. Li, W. Shang, B. Adams, M. Sayagh, and A. E. Hassan.
“A Qualitative Study of the Benefits and Costs of Logging
From Developers’ Perspectives”. IEEE Transactions on Soft-
ware Engineering, pp. 1–1, Jan. 2020.

[Li 20b] Z. Li, T.-H. Chen, and W. Shang. “Where Shall We
Log? Studying and Suggesting Logging Locations in Code
Blocks”. In: Proceedings of the 35th International Conference
on Automated Software Engineering (ASE ’20), pp. 361–372,
IEEE, Sep. 2020.

[Liu 19] Z. Liu, X. Xia, D. Lo, Z. Xing, A. E. Hassan, and S. Li.
“Which Variables Should I Log?”. IEEE Transactions on
Software Engineering, Sep. 2019.

[Liu 20] X. Liu, T. Jia, Y. Li, H. Yu, Y. Yue, and C. Hou. “Automat-
ically Generating Descriptive Texts in Logging Statements:
How Far Are We?”. In: Asian Symposium on Programming
Languages and Systems, pp. 251–269, Springer, Nov. 2020.

[Luo 18] L. Luo, S. Nath, L. R. Sivalingam, M. Musuvathi, and
L. Ceze. “Troubleshooting Transiently-Recurring Errors in
Production Systems with Blame-Proportional Logging”. In:
2018 USENIX Annual Technical Conference (USENIX ATC
’18), pp. 321–334, USENIX Association, July 2018.

[Marr 18] M. Marron. “Log++ Logging for a Cloud-Native World”.
In: Proceedings of the 14th ACM SIGPLAN International Sym-
posium on Dynamic Languages (DLS ’18), pp. 25–36, ACM,
Oct. 2018.

[Mizo 19] T. Mizouchi, K. Shimari, T. Ishio, and K. Inoue. “PADLA:
A Dynamic Log Level Adapter Using Online Phase Detec-
tion”. In: 2019 IEEE/ACM 27th International Conference on
Program Comprehension (ICPC ’19), pp. 135–138, IEEE, May
2019.

[Pecc 12] A. Pecchia and S. Russo. “Detection of Software Failures
through Event Logs: An Experimental Study”. In: 2012
IEEE 23rd International Symposium on Software Reliability
Engineering (ISSRE ’12), pp. 31–40, IEEE, Nov. 2012.

[Pecc 15] A. Pecchia, M. Cinque, G. Carrozza, and D. Cotroneo. “In-
dustry Practices and Event Logging: Assessment of a Crit-
ical Software Development Process”. In: 2015 IEEE/ACM
37th IEEE International Conference on Software Engineering
(ICSE ’15), pp. 169–178, IEEE, May 2015.

[Rong 18] G. Rong, S. Gu, H. Zhang, D. Shao, and WanggenLiu.
“How Is Logging Practice Implemented in Open Source
Software Projects? A Preliminary Exploration”. In: 2018
25th Australasian Software Engineering Conference (ASWEC
’18), pp. 171–180, IEEE, Nov. 2018.

[Rong 20] G. Rong, Y. Xu, S. Gu, H. Zhang, and D. Shao. “Can You
Capture Information As You Intend To? A Case Study on
Logging Practice in Industry”. In: 2020 IEEE International
Conference on Software Maintenance and Evolution (ICSME
’20), pp. 12–22, Sep. 2020.

[Sain 16] S. Saini, N. Sardana, and S. Lal. “Logger4u: Predicting
Debugging Statements in the Source Code”. In: 2016
Ninth International Conference on Contemporary Computing
(IC3 ’16), pp. 1–7, IEEE, Aug. 2016.

[Salf 04] F. Salfner, S. Tschirpke, and M. Malek. “Comprehensive
Logfiles for Autonomic Systems”. In: Proceedings of the 18th
International Parallel and Distributed Processing Symposium
(IPDPS ’04), pp. 211–219, IEEE, Apr. 2004.

[Shan 14] W. Shang, Z. M. Jiang, B. Adams, A. E. Hassan, M. W.
Godfrey, M. Nasser, and P. Flora. “An Exploratory Study
of the Evolution of Communicated Information About the
Execution of Large Software Systems”. Journal of Software:
Evolution and Process, Vol. 26, No. 1, pp. 3–26, Feb. 2014.

[Tova 13] D. Tovarňák, A. Vašeková, S. Novák, and T. Pitner. “Struc-
tured and Interoperable Logging for the Cloud Computing
Era: The Pitfalls and Benefits”. In: 2013 IEEE/ACM 6th
International Conference on Utility and Cloud Computing (UCC
’13), pp. 91–98, IEEE, Dec. 2013.

[Yao 18] K. Yao, G. B. de Pádua, W. Shang, S. Sporea, A. Toma,
and S. Sajedi. “Log4Perf: Suggesting Logging Locations
for Web-Based Systems’ Performance Monitoring”. In:
Proceedings of the 2018 ACM/SPEC International Conference
on Performance Engineering (ICPE ’18), pp. 127–138, ACM,
March 2018.

[Yuan 12a] D. Yuan, S. Park, P. Huang, Y. Liu, M. M.-J. Lee, X. Tang,
Y. Zhou, and S. Savage. “Be Conservative: Enhancing
Failure Diagnosis with Proactive Logging”. In: Presented
as part of the 10th USENIX Symposium on Operating Systems
Design and Implementation (OSDI ’12), pp. 293–306, Oct.
2012.

[Yuan 12b] D. Yuan, S. Park, and Y. Zhou. “Characterizing Logging
Practices in Open-Source Software”. In: 2012 34th Interna-
tional Conference on Software Engineering (ICSE ’12), pp. 102–
112, IEEE, June 2012.

[Yuan 12c] D. Yuan, J. Zheng, S. Park, Y. Zhou, and S. Savage. “Improv-
ing Software Diagnosability via Log Enhancement”. ACM
Transactions on Computer Systems, Vol. 30, No. 1, p. 4, Feb.
2012.

[Zeng 19] Y. Zeng, J. Chen, W. Shang, and T.-H. P. Chen. “Studying
the Characteristics of Logging Practices in Mobile Apps:
A Case Study on F-Droid”. Empirical Software Engineering,
Vol. 24, No. 6, pp. 3394–3434, Feb. 2019.

[Zhao 17] X. Zhao, K. Rodrigues, Y. Luo, M. Stumm, D. Yuan, and
Y. Zhou. “Log20: Fully Automated Optimal Placement of
Log Printing Statements Under Specified Overhead Thresh-
old”. In: Proceedings of the 26th Symposium on Operating
Systems Principles (SOSP ’17), pp. 565–581, ACM, Oct. 2017.

[Zhi 19] C. Zhi, J. Yin, S. Deng, M. Ye, M. Fu, and T. Xie. “An
Exploratory Study of Logging Configuration Practice in

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2022.3166924, IEEE
Transactions on Software Engineering

24 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14, NO. 8, JANUARY 2021

Java”. In: 2019 IEEE International Conference on Software
Maintenance and Evolution (ICSME ’19), pp. 459–469, IEEE,
Sep. 2019.

[Zhi 20] C. Zhi, J. Yin, J. Han, and S. Deng. “A Preliminary Study
on Sensitive Information Exposure Through Logging”.
In: 2020 27th Asia-Pacific Software Engineering Conference
(APSEC ’20), pp. 470–474, IEEE, Dec. 2020.

[Zhou 20] R. Zhou, M. Hamdaqa, H. Cai, and A. Hamou-Lhadj. “Mo-
biLogLeak: A Preliminary Study on Data Leakage Caused
by Poor Logging Practices”. In: 2020 IEEE 27th International
Conference on Software Analysis, Evolution and Reengineering
(SANER ’20), pp. 577–581, Feb. 2020.

[Zhu 15] J. Zhu, P. He, Q. Fu, H. Zhang, M. R. Lyu, and D. Zhang.
“Learning to Log: Helping Developers Make Informed
Logging Decisions”. In: 2015 IEEE/ACM 37th IEEE Interna-
tional Conference on Software Engineering (ICSE ’15), pp. 415–
425, IEEE, May 2015.

APPENDIX B
EXPLANATION OF THE TYPICALLY EXCLUDED PA-
PERS

First, we did not include studies that focus on log analysis
or the usage of log messages, which have been excluded
according to E1 listed in Table 2.

For example, Xu et al. [32] proposed a general method-
ology to mine and analyze console logs to automatically
detect system runtime problems. Yuan et al. [33] designed
and implemented an effective diagnosis technique, which
can analyze logs from a failed production run and source
code to automatically generate useful information that as-
sist engineers in diagnosing errors. Similarly, other studies
like [34], [35], [36], [37], [38], [39], [40] focusing on this topic
have been excluded from our study.

Second, we did not include studies that focus on the
technologies that log and analyze the behaviors of users
rather than software systems, which meet the exclusion
criterion E2 listed in Table 2. For example, many studies
on audit logs are outside the scope of our research because
audit logs typically record the behavior of users. The pur-
pose of such research is usually to ensure the security of
the system [41], [42], [43]. King et al. [44] evaluated the use
of a heuristics-driven method for identifying mandatory log
events to support security analysts in performing forensic
analysis. Similarly, some other studies have focused on the
recording of user behaviors [45], [46] have been removed
from the final study list.

Third, we did not include studies that did not explic-
itly discuss logging practices, which have been excluded
according to exclusion criterion E3 listed in Table 2. For
example, Rabkin et al. [47] described an abstract graphical
representation of console logs called the identifier graph and
a visualization based on this representation. Shang et al. [48]
studied the relationship between logs and code quality, and
the main focus of this paper is on the code quality rather
than on logging practice. Some other studies [49], [50], [51]
are excluded for similar reasons.

Last but not least, we did not include studies that are
workshop papers, position papers, or ongoing work, which
have been excluded according to exclusion criterion E3–
5 in Table 2. The typical examples for workshop papers
are [52], [53], [54]. The typical examples for position papers
or ongoing work are [55], [56], [57].

Shenghui Gu received the BSc degree from
Nanjing University, China. He is currently work-
ing toward the PhD degree in the Software In-
stitute, Nanjing University, China. His research
interests are in software engineering, particularly
in AIOps, software log analytics, DevOps, as
well as empirical and evidence-based software
engineering.

Guoping Rong received the BSc degree in com-
puter science and technology, MSc degree in
software theory and PhD degree in applied soft-
ware engineering, all from Nanjing University. He
now is a faculty member with the Software Insti-
tute, Nanjing University and the director of the
joint laboratory of Nanjing University and Tran-
swarp on data technology. His research area
includes software process, DevOps, AIOps and
empirical methodology, etc.

He Zhang is a Full Professor of Software Engi-
neering and the Director of DevOps+ Research
Laboratory at the Nanjing University, China, also
a Principal Scientist with CSIRO, Australia. He
undertakes research in software engineering,
in particular software & systems process, soft-
ware architecture, DevOps, software security,
blockchain-oriented software engineering, em-
pirical and evidence-based software engineer-
ing. He has published over 160 peer-reviewed
papers in high quality international conferences

and journals, and won 11 Best/Distinguished Paper Awards from several
prestigious international conferences and journals in software engineer-
ing community.

Haifeng Shen is an associate professor, head
of discipline of information technology, and di-
rector of the HilstLab in the Faculty of Law and
Business, Australian Catholic University. His re-
search expertise is interdisciplinary and revolves
around human-centred artificial intelligence and
software technologies, which is uniquely posi-
tioned at the intersection of human computer
interaction, software engineering, and artificial
intelligence with a unique focus on ‘interaction’
and ‘integration’: human-AI interaction, human-

software interaction, and integration of AI and software.

