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Abstract—The microservice architecture has been commonly
adopted by large scale software systems exemplified by a wide
range of online services. Service monitoring through anomaly
detection and root cause analysis (RCA) is crucial for these mi-
croservice systems to provide stable and continued services. How-
ever, compared with monolithic systems, software systems based
on the layered microservice architecture are inherently complex
and commonly involve entities at different levels of granularity.
Therefore, for effective service monitoring, these systems have a
special requirement of multi-granular RCA. Furthermore, as a
large proportion of anomalies in microservice systems pertain to
problematic code, to timely troubleshoot these anomalies, these
systems have another special requirement of RCA at the finest
code-level. Microservice systems rely on telemetry data to perform
service monitoring and RCA of service anomalies. The majority
of existing RCA approaches are only based on a single type of
telemetry data and as a result can only support uni-granular
RCA at either application-level or service-level. Although there
are attempts to combine metric and tracing data in RCA, their
objective is to improve RCA’s efficiency or accuracy rather than
to support multi-granular RCA. In this article, we propose a new
RCA solution TrinityRCL that is able to localize the root causes of
anomalies at multiple levels of granularity including application-
level, service-level, host-level, and metric-level, with the unique
capability of code-level localization by harnessing all three types
of telemetry data to construct a causal graph representing the
intricate, dynamic, and nondeterministic relationships among the
various entities related to the anomalies. By implementing and de-
ploying TrinityRCL in a real production environment, we evaluate
TrinityRCL against two baseline methods and the results show that
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TrinityRCL has a significant performance advantage in terms of ac-
curacy at the same level of granularity with comparable efficiency
and is particularly effective to support large-scale systems with
massive telemetry data.

Index Terms—Root cause, telemetry data, microservices.

I. INTRODUCTION

IN RECENT years, we have witnessed rapid growth of online
services, some of which serve a massive number of users. For

example, as of the first quarter of 2022, Facebook has roughly
2.93 billion monthly active users. Most of these systems adopt
the microservice architecture as it supports faster delivery, better
resilience, and higher adaptability to dynamic customer require-
ments [1], [2]. To ensure a great customer experience, service
monitoring is critical to keep such a system healthy and able to
provide stable and continued service. As reported in a systematic
survey [3], researchers and practitioners have proposed many
anomaly detection and root cause analysis (RCA) methods for
service monitoring. It should be noted that RCA varies from
the localization of a specific erroneous code snippet to the
indication of a general direction worthy further exploration.
Most RCA approaches only produce informative clues [4] to the
genuine root cause that has to be determined through in-depth
manual analysis [3]. Furthermore, compared with the monolithic
architecture, the microservices put new requirements on service
monitoring and anomaly diagnosis [5].

First, the microservice architecture is usually composed of
multiple layers from bottom to top in the order of the hardware
layer that comprises the actual machines, the communication
layer that houses everything relevant to the application, system,
and service communication, the application platform that pro-
vides system-wide tools and services, and the microservice layer
where the microservices are completely abstracted away from
the lower infrastructure layers [6]. Therefore, a microservice
system is inherently complex and commonly involves entities at
different levels of granularity including the application-level, the
service-level (an application is a collection of microservices in-
voking one another), and the host-level (a physical machine hosts
one or more microservices). Correspondingly, as illustrated by
Fig. 1 and Table I, due to factors such as data availability and
cost-effectiveness, it is important that a microservice RCA so-
lution is able to localize the root causes of anomalies at multiple
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Fig. 1. RCA at multiple levels of granularity and examples of different telemetry data.

TABLE I
DEFINITIONS OF RCA AT MULTIPLE LEVELS OF GRANULARITY

levels of granularity including those as high as application-level,
service-level, and host-level and those as low as metric-level (a
specific metric of a host such as CPU usage, response time) and
code-level (a specific erroneous code snippet of a microservice
running on a host) [3].

It is noteworthy that although localizing a low-level root cause
of an anomaly would normally need to first identify high-level
ones, an anomaly detected at a high level (service or host) may
not always lead to localization of low-level (metric or code)
root causes. For example, if there is an intermittent problem
with a service external to a microservice system being called,
RCA based on the system’s internal telemetry data is unlikely

to localize the relevant host, metrics, or code of the anoma-
lous external service. Furthermore, there is a non-deterministic
relationship between the two low-level RCA. A metric-level
anomaly may lead to the localization of defective code if the
collected telemetry data provides adequate information or may
not necessarily be relevant to faulty code. Likewise, a code-level
root cause may or may not exhibit anomalous metrics.

Second, according to a recent industrial survey [7], most
anomalies in a microservice system are caused by functional
faults. An empirical study based on five open source microser-
vice systems further reveals that general programming errors
form the major cause of microservice functional faults [8].
These studies indicate that a large proportion of anomalies in
a microservice system pertain to problematic code and as such
to timely troubleshoot these anomalies, it is extremely critical
that a microservice RCA solution is able to localize the root
causes of anomalies at the finest code-level.

In microservice systems, three types of telemetry data are
used to perform RCA to service anomalies, which are metric
data, logging data, and tracing data [3], [9], [10], as shown in
Fig. 1. Metric data provides a holistic view of the healthiness
of running services and is normally a numeric representation of
the data measured over intervals of time [9], which can originate
from a variety of sources, e.g., infrastructure, hosts, and services.
Logging data refers to an immutable, timestamped record of
discrete events that happened in a system over time [9] and is
usually generated by executing logging statements in running
services. Tracing data is a representation of a series of causally
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related distributed events in a microservice system that can
be used to monitor a request from start to end across various
components in the system [9].

The majority of microservice RCA approaches are only based
on a single type of telemetry data, among which metric-based
and tracing-based ones are the mainstream [3]. Metric-based
approaches [11], [12], [13], [14] typically utilize metric data to
construct causal relationships between the microservices associ-
ated with anomalies from which they try to infer the root causes.
Usually, they can only identify anomalous applications or ser-
vices but can not provide adequate information to track down
the root causes of the anomalies. Tracing-based approaches [15],
[16], [17], [18] mainly use tracing data to model the relationships
between anomalous symptoms of several potentially interrelated
services (e.g., using call graphs [2], [18], [19]) with which
graph-based algorithms (e.g., random walk and breadth-first
search) can be employed to perform RCA. However, most of
them can only localize the root causes at the application-level
or service-level [3].

There are attempts to exploit multiple types of telemetry data
in order to improve RCA’s efficiency or accuracy. For example,
Wang et al. [20] used time series (metric data) and system
topology (tracing data) to effectively reduce the analysis time of
RCA. Wu et al. [2] used application- and service-levels metrics
(metric data) and service call paths (tracing data) to construct
a topology graph representing the anomaly propagation in the
microservice environments and its accuracy surpassed several
state-of-the-art methods. However, to the best of our knowledge,
there has been no attempt to support multi-granular RCA by
combining multiple types of telemetry data.

Theoretically, by combining the aforementioned three typical
types of telemetry data, we may be able to improve system
observability [21] for better service monitoring, RCA and ser-
vice quality assurance. As an anomalous event should leave a
“footprint” that can be captured by the three types of telemetry
data, a possible RCA approach is to infer vital clues to the
anomalous event by aggregating and analyzing information in
the “footprint”, e.g., timeline, invocation, and causality, which
would help localize its root cause. However, such an approach
faces a formidable challenge due to the difficulties in making
use of sparse information out of voluminous [22], [23], [24]
and heterogeneous telemetry data [25], [26], [27], in capturing
dynamic and intricate invocation relationships among microser-
vices, and in tracking down nondeterministic propagation of
service anomalies. Furthermore, these issues are often entan-
gled, making it even harder to localize the root cause of an
anomaly. For instance, as RCA is a posteriori investigation, it
may be difficult to determine whether a piece of “footprint”
information originates from the anomalous event for which RCA
is conducted or from an irrelevant identical anomalous event,
which affects the RCA’s ability to consolidate a valid clue to the
anomaly’s root cause.

In this article, we present a new RCA solution referred to
as TrinityRCL, which exploits all three types of telemetry data
for root cause analysis of anomalies at multiple levels of granu-
larity including application-level, service-level, host-level, and
metric-level, with the unique ability of localizing root causes

at the finest code-level. We overcome the aforementioned chal-
lenge by constructing a causal graph to represent the intricate,
dynamic, and nondeterministic relationships among the vari-
ous anomaly-related entities (e.g., services, hosts, metrics, and
codes) mined from voluminous and heterogeneous telemetry
data. With the causal graph, we further design algorithms to
support the localization of root causes.

TrinityRCL has been deployed and evaluated in a real produc-
tion environment at a world-leading IT company Meituan1. The
results show that: (1) compared with the existing solutions, not
only can TrinityRCL localize root causes at multiple levels of
granularity, but it can also localize them at the finest code-level
(e.g., to a code snippet of a microservice on a specific host),
and (2) compared with the baseline solutions, it has a significant
performance advantage in terms of accuracy at the same level
of granularity with comparable efficiency and is particularly
effective to support large-scale systems with massive telemetry
data. In summary, we make the following contributions in this
article:
� We propose a new RCA solution TrinityRCL that exploits

all three types of telemetry data to support multi-granular
and code-level root cause localization.

� The proposed solution mines voluminous and heteroge-
neous telemetry data to construct a causal graph represent-
ing the intricate, dynamic, and nondeterministic relation-
ships among anomaly-related entities.

� With the causality graph, we design algorithms to derive
the correlations between the nodes in the graph, which are
used to determine a ranking of root causes.

� We implement and deploy the solution in a real production
environment and evaluate it against two baseline methods
using the dataset collected from the production environ-
ment.

The rest of this article is organized as follows. Related work
is briefed in Section II. Section III states the studied problem
and the associated challenges. Section IV details the TrinityRCL
approach. In Section V, we describe the experimental evaluation
and discuss the related issues in Section VI. The threats to valid-
ity are discussed in Section VII. Finally, Section VIII concludes
this article with suggestions for future work.

II. RELATED WORK

Significant research endeavor has been devoted to RCA in
recently years, some of which has even been marketed as com-
mercial software systems. For example, Dynatrace’s Davis AI
Causation Engine2 provides the ability to identify events that
share the root cause of an anomaly by utilizing different types of
contextual information (telemetry data), e.g., topology, transac-
tion, metrics, and code-level information. However, it is not able
to handle most nondeterministic anomaly propagation, which
limits its ability to perform multi-granular RCA in microser-
vice systems. In this section, we review statistical RCA meth-
ods including metric-based, tracing-based, and logging-based

1https://about.meituan.com/en
2https://www.dynatrace.com/platform/artificial-intelligence/
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approaches as well as multi-source RCA, which are closely
related to our work.

A. Metric-Based RCA Approaches

Although metrics provide rich information on the state and
trend of a system, it is almost impossible for engineers to manu-
ally localize the root cause of an anomaly from metric data due to
the gap between metric data and anomalous symptoms. In most
cases, the volume of metric data is usually too big for engineers
to manually correlate them with anomalous symptoms. Besides,
the noises in the metric data make it even harder to manually
screen out useful information. Therefore, automatic localization
of root causes with metric data has been a focus of research on
RCA in recent years. However, it is generally difficult to derive
correlations between metric data. When an anomaly occurs, all
the associated metrics are jittered due to the existence of indirect
anomaly propagation (cf. Section III.B), making it difficult for
engineers to locate the anomalous resources (e.g., machines or
services).

To overcome the challenges, existing research mainly focuses
on constructing causal relationships among microservices. Lin
et al. proposed Microscope, which found root cause candidates
by comparing the similarity between service-level metrics and
the abnormal services [11]. Chen et al. proposed CauseInfer,
which constructed a two-layered hierarchical causal graph of
the distributed system [12]. It applied metric data as nodes to
indicate service-level dependency, and inferred the root causes
of performance problems along the graph using statistical meth-
ods. Meng et al. developed a framework named MicroCause,
which used the Path Condition Time Series (PCTS) algorithm
to construct causal graphs based on monitoring metrics in
microservices [13]. It then inferred the root cause using the
Temporal Cause Oriented Random Walk (TCORW) algorithm.
Ma et al. put forward the concept of anomalous behavior graph
to describe the correlations between services associated with
different types of metrics [14]. Based on the graph, they designed
a tool named AutoMAP, which enabled dynamic generation of
service correlations and automated diagnosis by using multiple
types of metrics. Due to the limitations of the data source, these
approaches usually infer the causal relationships, which may not
be accurate. Moreover, they are not able to diagnose other levels
or types of root causes, in spite of their decent performance in
localizing the metrics that reflect the root causes.

B. Tracing-Based RCA Approaches

Recent research focuses on three main ways to achieve
tracing-based RCA [3]. One way is based on a trace compar-
ison methodology. Historical traces along with RCA results are
collected into a database, and when new tracing data comes in,
it is matched against the database using similarity algorithms.
Brandón et al. presented an RCA framework based on graph
similarity, which compared the anomalous graph that happened
in the system with a library of anomalous graphs that served as
a knowledge base [15].

Another way is based on statistical analysis to automatically
determine the possible root causes of anomalies by directly

analyzing the status data (e.g., response times) in the service
interactions involved in collected traces. Yu et al. designed and
implemented MicroRank to localize root causes of latency issues
in microservice environments [16]. It extracted service latency
from tracing data and then inferred the service instances that
led to latency issues by combining PageRank algorithm and
spectrum analysis. Huang et al. proposed tprof as a performance
profiler that aggregated distributed systems traces to diagnose
performance bugs and inefficiencies [17]. It used the structure
embedded within tracing data to hierarchically group similar
traces and calculate increasingly detailed aggregate statistics to
identify the slow parts of the system.

A further way is based on dependency or causal graph models
to understand the anomaly propagation path and infer the root
cause. Kim et al. proposed an unsupervised algorithm Moni-
torRank that used the historical and current time-series metrics
along with the call graph to predict root causes of anomalies
in service-oriented architectures by running the Personalized
PageRank algorithm on the graph [18]. Most tracing-based
approaches use metric data as a supplement to provide additional
information for RCA. However, these approaches are only able
to localize application- or service-level root causes.

C. Logging-Based RCA Approaches

The RCA approaches based on the logging data generated
by the services are done by processing the logging data to
construct a causal graph where nodes model services and each
edge between two nodes models that an anomaly in one service
may cause an anomaly in the other. By applying algorithms
such as Random Walk, the causal graph is then visited to infer
potential root causes of an anomaly. Aggarwal et al. presented a
golden signal (aka gateway errors that the users face or observe
when a system fails) based RCA approach by inferring the causal
relationships among services emitting error signals and the one
emitting golden signal error [28]. Random Walk-based graph
centrality approach was used to efficiently localize root causes of
the anomalies. Although logging-based approaches are capable
of localizing informational causes, the difficulties in log parsing
and abnormal information localization from large scale of logs
pose great challenges in practice.

D. Multi-Source RCA

Some researchers have attempted to combine multiple sources
of telemetry data including tracing data, metric data, and logging
data for RCA. Wu et al. presented a system that can infer root
causes in real time by correlating application performance symp-
toms with corresponding system resource utilization metrics [2].
The process of RCA was based on a graph constructed from the
invocation relationships to model anomaly propagation across
services and machines. Wang et al. proposed an end-to-end
anomaly detection and RCA system, which used time series
data (metric data) and system topology data (tracing data) to
reduce RCA time effectively [20]. They further proposed Groot,
a graph-based RCA approach [29] that used tracing data and
logging data to construct an event causal graph whose basic

Authorized licensed use limited to: Nanjing University. Downloaded on June 08,2023 at 14:18:21 UTC from IEEE Xplore.  Restrictions apply. 



GU et al.: TRINITYRCL: MULTI-GRANULAR AND CODE-LEVEL ROOT CAUSE LOCALIZATION 3075

nodes were monitoring events such as performance-metric devi-
ation events, status change events, and developer activity events.
These events carried detailed information and made it possible to
enable accurate RCA. However, existing studies do not fully ex-
ploit different types of telemetry data to provide traceable results
of RCA. Our TrinityRCL approach is particularly designed for
providing traceable results to assist with the subsequent failure
recovery.

III PROBLEM STATEMENT

In this section, we first describe the problem to be addressed
in the article and then elaborate the challenges associated with
the problem.

A. Problem Description

We use a structured style to formally describe the problem in
this study.

Purpose: To provide multi-granular and code-level RCA for
operations staff to timely pin down the genuine root causes of
service anomalies.

Approach: By synthesizing all the three types of telemetry
data collected by current APM systems.

Context: The proposed RCA is effective to support service
monitoring of large-scale microservice systems serving massive
users.

B. Challenges Associated With the Problem

The problem stated above comes with major technical chal-
lenges outlined in Section I. This section elaborates these chal-
lenges.

Difficulty in processing a huge volume of semi-structured
telemetry data. Although more telemetry data can potentially
provide more valuable information to improve RCA, a mas-
sive volume inevitably makes it hard to process and analyze
the data [2]. Apart from that, logging data is naturally semi-
structured as it highly depends on engineer’s experience and
expertise, and the heterogeneous nature of telemetry data in-
creases the difficulty in data processing and analysis. In most
cases, microservices are developed and maintained by different
teams. Although they may adopt similar logging frameworks
such as Log4j3 and Logback4, the format and content of logging
data are usually determined by individual engineers and thus
likely to be heterogeneous [25], [26], [30]. One possible reason
for this phenomenon is the missing common information needs
for the logging data.

Difficulty in capturing intricate and dynamic invocations. En-
abling continuous delivery of features motivates the architectural
migration from the monolithic to the microservices [31]. While
the tracing data captured by APM systems contains the invo-
cation information in a system comprising multiple microser-
vices, the continuous delivery of features supported by various
microservices can lead to frequent changes of invocation rela-
tionships among the microservices [2]. As a consequence, the

3https://logging.apache.org/log4j/2.x/
4https://logback.qos.ch

ever-changing invocation relationships between microservices
are an intrinsic characteristic of a system comprising multiple
microservices [16]. In addition, there are other reasons contribut-
ing to the dynamic changes of invocation relationships, e.g., flow
control, degrading or reallocation of microservice instances, or
simply a sudden power outage at the place where the physical
computer servers locate. As most machine learning-based and
rule-based approaches rely heavily on historical data for model
training [20], [32], [33], the constantly changing data may
increase the necessity for frequent model updates and inevitably
increase the cost of model training.

Difficulty in tracking down nondeterministic anomaly propa-
gation. Anomaly propagation is common in distributed systems
and has to be handled by RCA approaches designed for such
a system. However, anomaly propagation tends to be nonde-
terministic in most large-scale microservice systems. On one
hand, propagation of service anomalies along explicit service
invocation paths may suffer from arbitrary delays when a mas-
sive number of microservices are running concurrently, making
it difficult to attribute different service anomalies to the identical
event source [13]. On the other hand, anomalies can propa-
gate between two co-located microservices even when there
is no direct invocation relationship between them [13], [14].
For example, when multiple microservices share the computing
resources on the same physical machine, a slow responding
service exhausting most computing resources can easily cause
the responsiveness of other microservices deployed on the same
machine to suffer. As there is no invocation relationship between
these services, the tracing data is thus not able to reflect such
anomaly propagation.

IV. THE TRINITYRCL APPROACH

Fig. 2 provides a holistic view of the the RCA workflow
adopted by Meituan including (from left to right): (1) the
microservice system for business service provisioning, (2) the
APM system named Raptor for service monitoring, telemetry
data collection, and anomaly detection of all the provisioned
microservices, and (3) TrinityRCL for RCA of detected anoma-
lies with the collected multi-sourced telemetry data. At Meituan,
due to the massive number of microservices competing for the
relatively limited resources, an anomaly usually refers to the
abrupt increase or decrease of pre-defined KPIs (Key Perfor-
mance Indicators), e.g., “the number and the percentage of
successful calls” to a hot service are typical KPIs supported
by Raptor. Once an anomaly is detected by the APM system or
reported by business staff, TrinityRCL is activated to perform
RCA and guide operations staff to pin down the most likely root
causes.

In this section, we detail each procedure in TrinityRCL includ-
ing (from left to right) data collection, causal graph construction,
anomaly score assignment, and root cause localization. It first
selects and pre-processes different types of relevant telemetry
data during a specified time frame right before the occurrence of
the anomaly. The time frame is normally 30 minutes, which is set
based on our previous investigation on the aforementioned pro-
duction environment in Meituan [4]. Based on the pre-processed
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Fig. 2. An overview of the RCA workflow adopted by Meituan.

TABLE II
NOTATION LIST

telemetry data, TrinityRCL then constructs a causal graph able to
reflect the status and the propagation of related services. Finally,
TrinityRCL calculates and assigns various anomaly scores to
each node in the causal graph and infers which node is most
likely to cause the anomaly. In what follows, we elaborate
the main procedures of TrinityRCL in detail. For the clarity
of presentation, we list all the notations used in this article in
Table II.

A. Data Collection

As the starting point of RCA, data collection aims to aggregate
different types of telemetry data to provide a basis for later
analysis. Apparently, the three types of telemetry data (i.e.,
tracing data, metric data, and logging data) have different char-
acteristics and are normally used for different operations tasks.
In a real production environment, it is not rare that redundant or
misleading information in telemetry data may cover up actual
root causes [26], [34], making it hard to perform RCA. There-
fore, it is critical to pre-process the telemetry data before feeding
it to the subsequent procedures of TrinityRCL. Table III lists the
information that needs to be collected for each type of telemetry
data. Then by applying a 30-minute time frame, all the three

TABLE III
INFORMATION COLLECTED FOR EACH TYPE OF TELEMETRY DATA

types of relevant telemetry data are selected and pre-processed
by TrinityRCL. In the following paragraphs, we elaborate how
each type of telemetry data is processed in TrinityRCL.

1) Tracing Data: Tracing data is the central pillar in the
construction of a causal graph in TrinityRCL, which underpins
the formation of the graph’s skeleton. When an anomaly occurs,
TrinityRCL starts from the anomalous service sa and retrieves
the services that failed to invoke sa and those which sa failed to
invoke based on the tracing data. Then TrinityRCL recursively
searches for the related services according to the retrieved list
of services using Algorithm 1. In a production environment,
the number of related services could be enormous, and we thus
limit the depth of the recursive search to avoid the exponential
growth of the number of services, as the likelihood of a service
becoming the root cause decreases with the depth. Based on the
collected data (cf. Table III), the failure rate of invocations, i.e.
the percentage of failed invocations out of the total invocations,
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Algorithm 1: The OCF Algorithm.Recursive Search for
Anomaly-Related Services

is computed for further use during the anomaly score assignment
procedure.

2) Metric Data: Metric data can be collected by the various
agents of the APM system deployed on the hosts of microser-
vices. TrinityRCL treats all metric data as time-series data, e.g.,
the CPU usage collected at one-minute intervals from 12:00 to
12:30. However, the time series data collected from a production
environment may inevitably contain missing values. Therefore,
we apply some strategies to pre-process the metric data, e.g.,
using the average value of the adjacent data to interpolate the
missing data. As most APM systems perform anomaly detection
through metric data, anomaly data reflecting the symptoms of
an anomaly is also a type of time series metric data. Therefore,
TrinityRCL adopts the same strategy to handle anomaly data
as it does for metric data. Finally, the collected anomaly data is
aggregated into specific time span buckets of usually one minute
in TrinityRCL.

3) Logging Data: Logging data is generated by logging
statements instrumented by the developers responsible for the
development and operations of microservices. To ensure the
validity of logging data, each entry is required to record the
timestamp, service identifier, host identifier, severity, log mes-
sages, and number of executions, as listed in Table III. The
information collected is similar to the log data model (seman-
tic conventions) defined by OpenTelemetry5, which is readily
available through most major logging tools (e.g., Log4j). In
TrinityRCL, the timestamp and execution count of the log entries

5https://opentelemetry.io/docs/reference/specification/logs/data-model/

Fig. 3. An example of converting logging data to time series data.

are also converted into time series data by aggregating the count
of log entries associated with failures into time buckets based
on the timestamp of each log entry, as illustrated by Fig. 3.

B. Causal Graph Construction

To support multi-granular RCA, TrinityRCL combines multi-
ple types of telemetry data to construct a causal graph that is able
to represent the runtime states of microservices. The skeleton of
the graph is based on the tracing data and complemented by the
other two types of telemetry data. With the causal graph, once
a root cause is localized, the analysis result can be traced from
the root cause to the anomaly. To reflect the dynamics of mi-
croservices, the causal graph is constructed using the telemetry
data retrieved in a 30-minute time frame right before an anomaly
occurs instead of using the historical data from static analysis. As
mentioned in Section III.B, anomalies may propagate not only
among the services along the service call paths, but also to the
services co-located on the same machines [19], [35]. To deal with
the diversity of anomaly propagation, TrinityRCL introduces
different types of nodes in the causal graph to comprehensively
characterize the runtime state of an entire microservice system.
A causal graph consists of the following types of nodes.
� Service nodes (S = s1, s2, . . . , sk) represent specific mi-

croservices.
� Host nodes (H = h1, h2, . . . , hk) represent hosts provi-

sioning one or more microservices.
� Metric nodes (M = m1,m2, . . . ,mk) represent metrics

that reflect the state of a host.
� Fault nodes (F = f1, f2, . . . , fk) represent unexpected ex-

ception stack that occurs on a host.
Fig. 4 depicts the process of constructing a causal graph in

three steps.
Step 1 Recover invocation relationships between service

nodes. If there is a failed invocation from service
nodes si to sj , we add a directed edge from si to sj in
the causal graph. The failure rate of the invocation
is also recorded at this step. The causal graph in
Fig. 4(a) shows the invocation relationships among
microservices s1, s2, s3.

Step 2 Establish hosting relationships between service nodes
and host nodes. If service si is allocated to host hj
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Fig. 4. An example of causal graph construction.

for provisioning, we add a directed edge from si to
hj in the causal graph. The causal graph in Fig. 4(b)
shows the relationships between hosts h1, h2, h3 and
microservices s1, s2, s3.

Step 3 Add metric and fault relationships to host nodes. The
runtime state of each host hi is monitored by multiple
metrics. For each metric nodemj that records the cor-
responding type of metric data related to the anomaly,
we add a directed edge from host hi to metric mj in
the causal graph. One or more faults may occur on a
host hi. For each fault node fj that records the error
messages, e.g., exception stacks, we add a directed
edge from hi to fj in the causal graph. The causal
graph in Fig. 4(c) shows metric nodes and fault nodes
are attached to host nodes.

C. Anomaly Score Assignment

Once a causal graph is constructed, we proceed to assign
an anomaly score to every edge in the graph that reflects the
correlation between each node to the anomaly node, as shown
in Fig. 4(d). Each anomaly score represents the probability of
the anomaly transferring from one node to another and is the
basis of the subsequent random walk (cf. Section IV.D). In this
procedure, TrinityRCL assigns anomaly scores by calculating
the correlation coefficients between the connected nodes. For
different types of nodes, we apply different correlation coeffi-
cient algorithms optimized to balance the effectiveness and the
performance of analysis. As discussed in Section III.B, propa-
gation delays can influence the accuracy of correlations between
metric data. Therefore, in TrinityRCL, we choose algorithms that
can quantify synchrony between time series data including:
� Dynamic Time Warping (DTW) [36]. It measures the opti-

mal matching (similarity) between two time series that do
not synchronize perfectly. Originally devised for speech
analysis, DTW computes the euclidean distance at each
frame across every other frames to compute the minimum
path that will match the two time series. Due to the propa-
gation delays of metric data, DTW is suitable for describing
the difference between time series of two metrics.

� The First Order Temporal Correlation (CORT) [37]. It
indicates how two time series data co-vary over time, and
measures the features of monotonicity and growth rate.
The value of CORT means the two time series increase or
decrease simultaneously with the same growth rate (similar

behavior). As the time series data value of a fault node
is zero in most cases, CORT is adequate to calculate the
correlation (based on two time series data) between a fault
node and an anomaly. Compared with DTW which has a
time complexity of O(n2), CORT is more efficient as it has
a lower complexity of O(n).

In particular, anomaly scores are calculated in the following
ways:
� Anomaly score of the edge from a host node to a metric

node ASm
ij . For the edge from host node hi to metric node

mj , we compute DTW correlation coefficient (denoted as
corrdtw(mj , sa)) between the time series data of mj and
that of anomalous node sa.

� Anomaly score of the edge from a host node to a fault
node ASf

ij . For the edge from host node hi to fault node
fj , we compute CORT correlation coefficient (denoted as
corrcort(fj , sa)) between the time series data of fj and
that of anomalous node sa.

� Anomaly score of the edge from a service node to a host
node ASh

ij . For the edge from service node si to host node
hj , we first calculate the maximum correlation coefficient
among the edges from hj to all its metric nodes Mhj and
all its fault nodes Fhj . We then calculate the ratio of the
number of failures in hj to the number of failures in all
hosts Hsi provisioning service si, which is denoted by
Rh

ij . Finally, ASh
ij is assigned as the weighted sum of the

failure ratio and the aforementioned maximum correlation
coefficient and formulated in (1), where α is a constant
denoting the weight of the failure ratioRh

ij and β is another
constant denoting the weight of the maximum correlation
coefficient of all fault nodes. Such an anomaly score is a
weighted sum of the maximum correlation coefficient of
all metric nodes and fault nodes under host node hj and the
failure ratio of hj . An example of such an anomaly score
is given in Section IV.E.

ASh
ij = (1− α)

[
(1− β) max

mk∈Mhj

ASm
jk

+β max
fl∈Fhj

ASf
jl

]
+ αRh

ij (1)

where

Rh
ij =

Lhj∑
k∈Hsi Lk
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Algorithm 2: Anomaly Score Assignment.

� Anomaly score of the edge between two service nodesASs
ij .

For the edge from service node si to sj , we calculate the
maximum correlation coefficient among the edges from sj
to all host nodes Hsj provisioning the service sj . Then we
calculate the failure ratio of invocations from si to sj (cf.
Section IV.A.1), which is denoted by Rs

ij . ASs
ij is assigned

as the weighted sum of the failure ratio of invocations and
the aforementioned maximum correlation coefficient. The
equation is formulated in (2), whereγ is a constant denoting
the weight of the failure ratio Rs

ij . An example of such an
anomaly score is given in Section IV.E.

ASs
ij = (1− γ) max

hk∈Hsj
ASh

jk + γRs
ij (2)

To summarize, the anomaly scoreASij of the edge from nodes
i to j is determined by (3) shown at the bottom of this page.
It is worth noting that the time series data used to calculate
the anomaly scores has been normalized in order to make all
anomaly scores comparable.

The procedure of anomaly score assignment is presented in
Algorithm 2. At the end of this procedure, we obtain a causal
graph whose edges are annotated with the assigned anomaly
scores.

D. Root Cause Localization

Although anomaly scores are useful for localizing the poten-
tial root causes, they do not necessarily imply causality [18] and
should not be the only factor used to determine whether a node
has caused an anomaly as root causes usually have a high chance
of propagation. A microservice with more abnormal than normal
traces passing through it is more likely to be the root cause [38].
To simulate the process of anomaly propagation, we localize root
causes from the constructed causal graph with edges annotated
by anomaly scores via Random Walk with Restart (RWR) [39]—a
variant of Random Walk algorithm, which has been widely used
for root cause localization [18], [19], [40]. As we only focus
on each node’s relevance w.r.t. the anomalous node, we choose
RWR that could restart only from the assigned node, i.e. the
anomalous node. In general, there are three stages involved in
RWR.

Stage 1: Transfer Probability Calculation. In this step, we
calculate the transfer probability of each node based on the
anomaly scores assigned to each edge (cf. Section IV.C), which
is detailed as follows:

1) Forward step: The algorithm walks from the anomalous
node to cause nodes. The transfer probability Pij from
nodes i to j equals to the anomaly score ASij of the edge
between the two nodes.

2) Backward step: The walker may be trapped in nodes
having low correlations with the anomalous node. As there
is no way to escape out until the next random walk, we
implement a step from the cause node to the anomalous
node to avoid local optimum. Formally, if eji ∈ E and
eij /∈ E, Pji = ρASij , where ρ ∈ [0, 1] is a parameter
controlling the impact of the backward step.

3) Self step: By definition, the walker is enforced to move
to another nodes even if the current node has a higher
anomaly score while all the neighboring nodes do not.
This transfer increases the probability of identifying nodes
unrelated to the given anomaly. To avoid this, the walker
tends to stay longer at the same node if all its neigh-
boring nodes have lower anomaly scores. Specifically,
for each node, the probability of staying equals to the
maximum anomaly score of upstream edges subtracting
that of downstream edges, which is formulated as Pii =
max(0,maxk:eki∈E ASki −maxl:eil∈E ASil).

To accelerate the random walk, we apply the alias
method [41], which picks a next node to walk into in O(1) time
complexity.

Stage 2: Random Walk Execution. With transfer probabilities,
we start RWR from the anomalous service sa. The algorithm
executes walking forNt times. For each random walk, the walker
stops after Ns steps. In the end, node i is visited ci times.

ASij =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

corrdtw(mj , sa) if hi ∈ H and mj ∈ Mhi

corrcort(fj , sa) if hi ∈ H and fj ∈ Fhi

(1− α)
[
(1− β)maxmk∈Mhj AS

m
jk + βmaxfl∈Fhj AS

f
jl

]
+ αRh

ij if si ∈ S and hj ∈ Hsj

(1− γ)maxhk∈Hsj ASh
jk + γRs

ij if si, sj ∈ S

(3)
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Fig. 5. A live multi-granular RCA case using TrinityRCL.

Stage 3: Root Cause Ranking. The final step is to rank the
result of the random walk execution. As there are different types
of nodes in the causal graph, TrinityRCL groups the results
according to the type of nodes and arranges the results of each
group in descending order according to ci, i.e. the number of
times node i is visited. In the end, TrinityRCL provides an
interactive web interface that illustrates the route of anomaly
propagation with detailed anomaly-related information to facil-
itate engineers to determine the root cause of the anomaly.

E. A Live Multi-Granular and Code-Level RCA Case

Fig. 5 demonstrates a live case where TrinityRCL assists the
operations staff at Meituan in probing the root causes of an
anomaly. The process of RCA is triggered when an anomaly
relating to the abnormal behavior of “cloud-service” is detected
by the Raptor system (see Fig. 2) or directly reported by the
business staff. In this case, one abrupt decrease of a monitored
KPI (i.e., success rate of order requests drops from ≥ 99.99% to
< 99%) has occurred. As the KPI is pertinent to a core service
handling orders, the Raptor system captures this event according
to the configuration settings by the users in Meituan. Then,
TrinityRCL is activated to construct a causal graph with the
multi-sourced telemetry data collected by Raptor. In the graph,
different shapes represent different levels of granularity and each
arrow delineates a possible anomaly propagation route (such a
route is based on a logic relationship and does not necessarily
require the existence of a real and explicit invocation), while
the shape and arrow sizes denote the probabilities of anomaly

propagation routes determined by their anomaly scores (a bigger
size depicts a higher probability). For example, the maximum
anomaly scores of all the metric nodes and fault nodes from
the host node of “cloud-api-web05@10.50.9.148” are 0.4 and
0.6, respectively. Then the anomaly score of propagation route
arrow➁ is 0.44 = (1− 0.2) ∗ ((1− 0.5) ∗ 0.4 + 0.5 ∗ 0.6) +
0.2 ∗ 0.2when the failure ratio of this host node is 0.2, andα and
β are set to 0.2 and 0.5, respectively. Since this host node has
the maximum anomaly score among all the hosts provisioning
service node “cloud-api-web”, the anomaly score of propagation
route arrow➀ is 0.472 = (1− 0.2) ∗ 0.44 + 0.2 ∗ 0.6 when its
failure ratio of invocations is 0.6 and γ is set to 0.2. Generally,
the higher the anomaly score of a node is, the more probable a
random walker will walk into it (cf. Section IV.D). For the sake
of simplicity, yet without loss of generality, TrinityRCL only
suggests the top 3 most probable propagation routes from each
node for operations staff’s perusal in this example, but determi-
nation of k in top-k ranking can be configured in TrinityRCL. It is
noted that there can be dozens or even hundreds of propagation
routes from each node in a large microservice system and it is
difficult, if not entirely impossible, for operations staff to assess
each one of them.

By referring to the most probable propagation route arrow➀
from the service node where the anomaly occurs in the visual
causal graph, the operations staff can first localize the service-
level root causes at the service node of “cloud-api-web” which
shows a total of 17 failed calls. Then from this service node,
the most probable propagation route is arrow➁, which points
to the host node of “cloud-api-web05@10.50.9.148” where
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host-level root causes are likely located. Subsequently from
this host node, propagation route arrow➂ points to the fault
node of “java.lang.NoSuchFieldException”, which contains in-
formation to localize the code-level root causes comprising the
corresponding code lines in the source code extracted from
relevant error logs. Also from the same host node, propaga-
tion routes arrow➃ and arrow➄ point to the metric nodes of
“TcpExt.TCPTimeouts” and “jvm.fullgc.count” that reveal a
steep TCP timeout and throws nearly 2000 ‘NoSuchFieldEx-
ception’ exceptions in a short period of time, respectively, both
crucial for localizing metric-level root causes. Finally, through
the multi-granular RCA supported by TrinityRCL, the operations
staff can quickly pin down the actual root cause of the detected
anomaly at the service node of “cloud-api-web”, which is a
new version of source code with updated fields (attributes)
and a new object deployed at the host node of “cloud-api-
web05@10.50.9.148”. Another method accessing this object
using the reflection mechanism that has not been synchronized
creates a large number of exceptions and leads to a steep TCP
timeout, hence devouring the computing resources at this host
node and further causing the detected anomaly at the service
node. A back-and-forth exploration further reveals that services
on more than 20 hosts accessing this new version of source
code/object present various anomalous behaviors.

V. EXPERIMENTAL EVALUATION

In this section, we evaluate TrinityRCL in a real produc-
tion environment by benchmarking its performance against two
state-of-the-art baseline methods in terms of accuracy and effi-
ciency. The two methods are MicroCause [13] that only supports
metric-level RCA using temporal cause oriented random walk
and MicroRCA [2] that only supports service-level RCA using
causal graph and random walk. Both methods utilize multiple
types of telemetry data and adopt similar techniques to those
of TrinityRCL such as causal graph and random walk. More
importantly, both methods achieve relative higher accuracy than
others.

A. Experiment Setup

In the following subsections, we elaborate the production
environment, the testbed, and the dataset for the experiment,
as well as the baseline methods and the metrics used in the
evaluation.

1) Production Environment and Testbed: Meituan is one of
the world-leading and largest online services providers, serving
tens of millions of users per day. To guarantee a great customer
experience and the stability of the services, engineers have
developed an APM system named Raptor to monitor the status
of these online services. Especially after a major technological
transformation from the monolithic to the microservice architec-
tures, the Raptor system monitors over ten thousand distributed
microservices and creates over one petabyte of telemetry data
each day.

Apparently, having a huge amount of data does not necessarily
mean that the root causes of service anomalies will automatically
pop up. Engineers need to rely on tools [42] and their personal

TABLE IV
HARDWARE AND SOFTWARE CONFIGURATION IN THE TESTBED

domain knowledge and experience to search for clues and further
localize the root causes, which is neither efficient nor effective.
They require an effective tool that can not only localize root
causes at multiple levels of granularity but also perform RCA at
the finest code-level (better to be code snippets) to be able to ef-
ficiently identify and confirm the root causes. Both accuracy and
efficiency are important for an RCA solution to be pragmatically
adopted in a real production environment.

We evaluate TrinityRCL in the production environment at
Meituan, where more than 100,000 microservices are provi-
sioned. For different types of telemetry data, distinct components
of the Raptor system are deployed to collect and pre-process the
data, as elaborated in Section IV.A. In addition, one server is
used to execute the RCA algorithms. Table IV describes the
hardware and software specifics of the testbed.

2) Baseline Methods: In our experiments, Nt (the times of
random walk) is set to 1,000,000 and Ns (the steps of each
execution of random walk) is set to 100. We compare TrinityRCL
against the following two baseline methods:
� MicroCause [13]: It is a framework for localizing root

causes in a microservice. Different from TrinityRCL, it only
uses metric data to construct a causal graph through causal
inference. Therefore, we only use collected metric data to
build the causal graph for proper comparison. Similarly,
they use a novel temporal cause oriented random walk to
identify root causes.

� MicroRCA [2]: It is another graph-based method to localize
root causes in microservice environments. To construct
a causal graph, they use application- and service- levels
metrics, as well as service call path data. For the random
walk algorithm, it applies Personalized PageRank [43] to
infer root causes. To implement MicroRCA, we construct
the causal graph by replacing the response time used in Mi-
croRCA with the failure rate, for the reason that TrinityRCL
does not locate performance issues as MicroRCA does.

To our best knowledge, there is currently no method that ex-
ploits all three types of telemetry data to provide multi-granular
and code-level RCA and as such are comparable to TrinityRCL.
The consideration to select the baseline RCA approaches is
three-fold. First, we prefer only replicable approaches, mean-
ing that detailed information to replicate the core algorithm
should be attainable. For example, as a promising RCA method,
Groot [29] also uses both tracing and logging data to achieve bet-
ter RCA accuracy. However, due to confidentiality restrictions,
its implementation details can not be accessible for replication.
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TABLE V
THE BASIC INFORMATION ABOUT THE 30 EXPERIMENTAL CASES

Second, we prefer the approaches using multiple types of teleme-
try data as more types can provide more useful information,
which will in turn potentially improve the performance of RCA.
Third, among the similar approaches (e.g., MonitorRank [18],
Microscope [11], CloudRanger [40], TON18 [19]) identified
from a recently systemic survey [3] and our investigation, the
accuracy of both MicroCause and MicroRCA are relatively
higher than others [2], [13].

3) Dataset: The dataset is based on the data from the real pro-
duction environment in 2021, including 30 different randomly
selected cases from the hottest product lines in Meituan, covering
all the three types of telemetry data. Each case is associated
with one reported anomaly, which contains a large volume of
telemetry data collected from over 100 services, over 50 hosts,
and over 100 metrics on each host with a time span of 30 minutes.
Take tracing data as an example. If one service invocation creates
one entry, there are easily over 1.5 million entries for one case
alone. The types of metrics can be roughly classified into the
following categories: CPU related metrics, memory related met-
rics, host load related metrics, network related metrics, kernel
related metrics, and Java Virtual Machine (JVM) related metrics.
The formats of the tracing, metric and logging data follow the
OpenTelemetry data models6. All these cases had been checked
and analyzed by professional operations staff in Meituan to
identify the anomalies and the corresponding root causes, among
which 11 cases were related to problematic source code. Note
that one anomaly may be caused by more than one root cause.
Table V lists the number of cases categorized by their actual root
causes and the number of cases that TrinityRCL is able to localize
at least one correct root cause at each level of granularity among
the 30 experimental cases. One intuitive root cause example for
each granularity level is also listed in this table.

4) Evaluation Metrics: To quantify the performance of Trin-
ityRCL and the baseline methods, we introduce two most com-
monly used metrics used in recent works [13], [14], [40], and
one metric to evaluate the efficiency.

6https://opentelemetry.io/docs/reference/specification/

� AC@k represents the probability that the top k ranking
results given by an algorithm include the actual root causes
for all given cases. The algorithm localizes the true root
causes more accurately with a smaller k and a higher
AC@k. Formally,AC@k is defined on a set of given failure
case A as:

AC@k =
1

|A|
∑
a∈A

∑
i<k R

a[i] ∈ V a
rc

min(k, |V a
rc|)

(4)

where Ra[i] is the rank of each root cause given by an
algorithm and V a

rc is the root cause set for failure case a.
� Avg@k denotes the overall performance of an algorithm

by computing the average AC@k. It can be formulated as:

Avg@k =
1

k

∑
1�j�k

AC@j (5)

� T denotes the time required for localizing the root cause by
an algorithm and is used to evaluate the execution efficiency
of an algorithm.

B. Experimental Results

Table VI shows the overall results of TrinityRCL and the
baseline methods for different types of cases, including service-
level, host-level, metric-level, and code-level cases. Note that
since no specific external service has been determined, we
deem the corresponding analysis as failed RCA to calculate
AC@k. Meanwhile, for the rest levels, we only use the data
with Meituan to calculateAC@k. As introduced in Section IV.B,
each of these cases reflects four different levels of granularity.
For example, service-level cases evaluate the performance of
methods to localize service-related anomalies. It can be seen
that TrinityRCL can achieve a top-1 accuracy of at least 80% in
localizing service-, host- and code-level anomalies, while it has
a relatively low accuracy in identifying metric-level anomalies.

Meanwhile, as shown in Table VI, the comparison between
TrinityRCL and the baseline methods also unravels favorable
results for TrinityRCL. As not all the baseline methods can

Authorized licensed use limited to: Nanjing University. Downloaded on June 08,2023 at 14:18:21 UTC from IEEE Xplore.  Restrictions apply. 

https://opentelemetry.io/docs/reference/specification/


GU et al.: TRINITYRCL: MULTI-GRANULAR AND CODE-LEVEL ROOT CAUSE LOCALIZATION 3083

TABLE VI
ACCURACY OF TRINITYRCL AND THE BASELINE METHODS

Fig. 6. Root cause rank against accuracy.

localize root causes at each of the four levels, we perform the
comparisons separately. In particular, as MicroRCA only sup-
ports service-level RCA, we compare TrinityRCL and MicroRCA
in terms of AC@1, AC@3, AC@5 and Avg@5 on all service-
level cases. Likewise, as MicroCause only supports metric-level
RCA, the performance comparison between TrinityRCL and
MicroCause in terms of AC@1, AC@3, AC@5 and Avg@5 is
conducted on metric-level cases. We can observe that TrinityRCL
outperforms MicroRCA in terms of both AC@k and Avg@5,
which are up to 15.7% and 9.3% higher, respectively. TrinityRCL
has a higher top-1 accuracy than MicroRCA does, which means
TrinityRCL can localize the true root causes more accurately.
Similarly, we can observe that TrinityRCL also outperforms
MicroCause both in terms of AC@k and Avg@5, which are
up to 66.7% and 40.0% higher, respectively. Both comparisons
result in less than 0.05p-value, indicating that the null hypothesis
(i.e., no significant difference between two sets of data) can be
rejected. It can be noticed that the accuracy of both TrinityRCL
and MicroCause on metric-level cases is not as high as on other
types of cases. The reason behind this may be due to the fact that
the correlation between the metric data does not reveal causality.

To evaluate the sensitivity to the performance of RCA, we
count the number of different ranks of all experimental cases
against root cause localization accuracy (i.e., AC@k) for Trin-
ityRCL, MicroCause, and MicroRCA, as shown in Fig. 6. In
each figure, the more and the larger scatters are near the outer
side, the more accurate the method is. It can be seen that both

TrinityRCL and MicroRCA show good performance on service-
level anomalies. However, TrinityRCL has a higher accuracy
when not all root causes are localized. The overall performance
of both TrinityRCL and MicroCause on metric-level cases is not
as good as that on service-level cases, but TrinityRCL still has a
higher accuracy when not all root causes are localized.

To evaluate the efficiency of TrinityRCL, MicroCause, and
MicroRCA, we recorded the time required for localizing the root
cause (T ) of each case. Fig. 7(a) compares T among all the three
methods from which it can be observed that MicroCause requires
significantly more time to localize a root cause compared to
the other two methods. In our experiments, MicroCause cannot
work for those cases with a large number of nodes (over 500
nodes) in the causal graph, ending up with execution timeouts
due to the massive computation of partial correlations among
the metric data. Fig. 7(b) compares T between TrinityRCL and
MicroRCA from which we can notice that MicroRCA took less
time to localize the root cause compared to TrinityRCL. This
is because MicroRCA used Pearson correlation coefficient [44]
to represent the correlation between service nodes, which had
lower complexity, rather than calculating the correlation be-
tween the metric data as TrinityRCL did, which was rather time-
consuming. However, MicroRCA stopped working for those
cases with more than 7000 nodes in the causal graph due to
execution timeouts. Fig. 7 shows T for TrinityRCL, indicating
that TrinityRCL supports massive datasets (e.g., up to 400,000
nodes in the causal graph), while MicroRCA and MicroCause
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Fig. 7. Comparisons of the time required for TrinityRCL and the baseline methods.

only support small datasets (up to 7,000 and 500 nodes in the
causal graph respectively). Furthermore, the experiments show
no correlation between the efficiency of the three methods and
the accuracy of the RCA results.

VI. DISCUSSION

By harnessing three types of telemetry data, mining and re-
lating different information pertinent to the identical anomalous
event, TrinityRCL has presented its merits of allowing multi-
granular and code-level RCA with reasonable time efficiency.
Compared with only relying on a single type of telemetry data,
combining multiple types of telemetry data enables RCA to
capture the runtime status of a microservice system from multi-
ple perspectives, which makes it possible to better support root
cause localization like TrinityRCL. However, the heterogeneous
nature of the multiple types of telemetry data, the dynamic
and intricate invocation relationships among microservices and
the nondeterministic anomaly propagation cast formidable chal-
lenges which require proper technical treatments. In addition,
several non-technical considerations regarding the application
of TrinityRCL are equally critical, which will be discussed in
this Section.

A. Establish a Suitable Data Basis for RCA

A prerequisite for most RCA approaches is the availability of
sufficient and informative telemetry data. To meet this prereq-
uisite, we list several suggestions as follows.

Data sources: This study reveals the value of using multiple
types of telemetry data for better RCA. In general, each type
of telemetry data may provide specific clues to an anomalous
event from a unique perspective. This is partly the reason why
practitioners also proposed using multiple telemetry data to
improve observability [9]. However, the challenge is that RCA
relies heavily on data and consequently heterogeneity in data
taxonomy, collection protocol, and the like may severely impact
the efficacy of some advanced RCA approaches. A well-known
community effort is the OpenTelemetry7 project, which provides

7https://opentelemetry.io/

a collection of standard tools, APIs, and SDKs to instrument,
generate, collect, and export telemetry data.

Data quality: RCA approaches such as TrinityRCL rely on
various data to perform the analysis. Therefore, the data quality
may directly impact the results. However, quality issues such as
redundant or useless data cannot be completely mitigated in real
production environments [34], [45]. Among the three types of
telemetry data, logging data is most vulnerable to quality as it
is usually susceptible to individual’s expertise, experience and
preference [46], [47], [48], [49]. In most cases, the content and
format of logging data are largely determined by the developers,
which creates difficulties to ensure the data quality. However,
as a recent systematic study reveals, research in this area still
has a long way to go before logging intentions can be well
satisfied [30].

Data preparation: In an ecosystem of microservices, plenty
of telemetry data, especially metric data and tracing data such
as CPU usage, response time, and invocation information,
is created and gathered by off-the-shelf APIs. In this sense,
GQM [50] is not a concept that is often mentioned in the context
of RCA. Nevertheless, the importance of GQM methodology
in RCA should not be ignored. We believe that the data basis
for RCA is far from satisfactory at least partially due to the
negligence of GQM data preparation. For example, several
studies [30], [51], [52] reveal that logging intentions (Goal) have
been ignored in most logging practices, leading to insufficient
information for log analysis — a critical practice required by
RCA. Meanwhile, as indicated in [24], [53], useless telemetry
data (even correct data) is also prevalent in RCA in practice,
creating a big burden to store the data and a huge challenge to
mine valuable information from the voluminous telemetry data.
To this end, we argue that the GQM methodology should be
applied in order to improve the efficiency in data preparation
and subsequently the effectiveness in RCA.

B. Adopt RCA in a Production Environment

There are several concerns that need to be considered when
adopting TrinityRCL in a real-world production environment.

Importance of balancing: RCA inevitably brings various
costs. For example, most RCA approaches consume consider-
able computation resources, e.g., CPU, memory, and disk. RCA
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needs time to perform the analysis, which is a cost to business.
It is therefore critical to maintain a balance between the cost
of and the benefits from RCA. While simple rules for such a
trade-off may not exist, the operations staff may need expert’s
judgement in most cases. For example, for critical services with
multiple backup hosts, a quick RCA to identify and cut off the
anomalous host or to downgrade service may make more sense
than to pin down the defective source codes. Or alternatively,
running TrinityRCL routinely to keep the whole software system
healthy might be a good operation practice.

Efficiency of RCA in big data scenarios: Some RCA methods
have decent performance in small-scale systems with limited
data. However, they may face serious efficiency problems in
big data scenarios. In [13], researchers used sliding window to
solve the time lag problem between metrics and achieved good
results. In the causal analysis between metrics, partial correlation
coefficients are calculated for each pair of metrics, yielding a
time complexity ofO(n3). However, if using the sliding window
method to process metric data, it would generate a set of metrics
with sizen− k + 1, wheren is the total length of the metric data
andk is the size of the sliding window. Therefore, the algorithmic
complexity of the method for causality construction using slid-
ing window can be as high as O(n4). In a big data environment,
the algorithm complexity ofO(n4) is not able to generate results
in time due to the high complexity. To solve this problem, Trin-
ityRCL is optimized by adopting CORT and DTW in correlation
calculation (cf. Section IV.C), which have a lower complexity
of O(n) and O(n2) respectively. As TrinityRCL’s optimization
strategy uses less data than sliding window does in causal anal-
ysis, its accuracy is severely impacted. However, this deficiency
is addressed by aggregating other types of telemetry data.

RCA scale up: In a real production environment, challenges
may be faced in scaling up the RCA approach. Nevertheless,
scale-up should not be a tough job in most cases as the service
monitoring is performed by the dedicated APM system and the
TrinityRCL system is hosted by a separated server. As the scope
of RCA increases, more servers for the APM system and the
TrinityRCL system can be deployed to collect more telemetry
data and provide more processing capability, respectively.

VII. THREATS TO VALIDITY

In this section, we cover the threats to validity that may arise
from our study.

The relative concept of “root cause”: The evaluation of
accuracy is determined by whether the root cause has been
localized by the three RCA approaches. However, as discussed in
Section I, the term “root cause” is a relative concept, which varies
from the localization of a specific erroneous code snippet to
the indication of a general direction worthy further exploration.
Therefore, a literal root cause confirmed by an engineer may not
necessarily be a genuine one. For example, high CPU usage for
a specific host server is a root cause frequently identified by the
evaluated RCA methods. However, we did not perform further
investigation to localize what caused high CPU usage (i.e., the
genuine root cause) as it may take much time to investigate in
an environment with massive microservices. In this sense, the

foundation of accurate RCA may be diminished. However, as an
informative clue, high CPU usage on a specific host also provides
a valuable direction to investigate the genuine root cause, which
is justifiable to be a qualified “root cause” on this ground. In this
sense, this threat risk could be controlled.

Implementation of the baseline methods: Since none of the
baseline methods (i.e., MicroRCA and MicroCause) provides
publicly accessible source code, we had to reproduce the al-
gorithms and develop prototypes of these methods based on the
published articles. Therefore, the implementation of the baseline
methods may not be exactly equal to the original ones. To
mitigate this risk of validity, we evaluated our prototypes using
the (simulated) dataset mentioned and obtained similar results
before using them to conduct experimental investigation using
the dataset in this study. With this strategy, this validity threat
can be reasonably minimized.

Dataset: To evaluate TrinityRCL, we used the data collected
by the Raptor system from the real production environment of
Meituan as described in Section V.A.3. However, anomalies and
the propagation of anomalies may take place in other production
environments in different ways. Therefore, the dataset derived
from Meituan may not be representative of other microservice
systems in other companies. To mitigate this threat, we applied a
randomization strategy in case selection where two researchers
independently prepared the dataset and evaluated TrinityRCL
separately. A total of 30 cases derived from the real production
environment were selected, which is a relatively large dataset,
and these cases cover RCA at different levels of granularity to
simulate real scenarios. In this sense, this threat to validity can
be fairly mitigated. Besides, Raptor adopts the OpenTelemetry
standard, and with more and more organizations supporting this
standard, this validity issue could be further controlled. Another
validity threat pertinent to the dataset is that the “root causes”
localized by the three RCA methods may be related to possible
undetected anomalies instead of the identified anomalies due
to the complexity in analyzing the massive volume of data in
each case. We worked with the professional operations staff in
Meituan to analyze each clue so that this factor can be fairly
controlled, however, this risk may not be entirely eliminated.

The 30-minute time span: We applied a time span of 30
minutes to perform RCA using TrinityRCL and to prepare the
experimental cases. The time span is a variable in TrinityRCL,
which can be adjusted by operations staff according to their
needs. The choice of 30 minutes is empirically based on our
experience with Meituan’s production environment from pre-
vious work [4] by compromising between complexity and per-
formance. Nevertheless, this time span may need to be tuned
to fit different application scenarios. Besides, the time span
may also impact the data content involved in our experimental
evaluations, which raises the necessity to evaluate TrinityRCL
in more scenarios, e.g., with dynamic length of time spans.

Constants in TrinityRCL: The default time frame (cf. Section
IV.A) and α, β, γ in (3) are constants that are set based on
our previous experience in the real production environment in
Meituan and the domain knowledge from the operations staff.
In order to apply them to different systems, engineers need
to manually adjust them to achieve better RCA performance.
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Apparently, these constants may vary in different microservice
systems. In this sense, more research should be carried out to
identify and investigate the factors impacting the value of these
constants and explore a systematic way to appropriately set and
dynamically adjust them to adapt to different contexts.

Absence of machine learning in TrinityRCL: Machine learn-
ing techniques have been increasingly adopted in RCA ap-
proaches. However, we do not recommend any machine learning
techniques in current version of TrinityRCL. Although we have
tried some in TrinityRCL, their results were not satisfactory. Nev-
ertheless, we did not optimize this technical route scrupulously,
which leaves a space for the future improvement of TrinityRCL.

Telemetry data used by baseline methods: The selected base-
line methods perform RCA without using all the three types
of telemetry data together, which is part of the reason why
they only support uni-granular RCA and their accuracy is lower
than that of TrinityRCL. As there is currently no method that
uses all three types of telemetry data to support RCA, we had
to compare several methods that are similar to TrinityRCL in
terms of localizing root causes at different levels of granularity
using different types of telemetry data. In particular, MicroRCA
combines tracing and metric data to localize service-level root
causes, while MicroCause only uses metric data to localize
metric-level root causes. In this way, we are able to establish
a good understanding of the performance of TrinityRCL against
that of the baseline methods in terms of granularity, accuracy
and efficiency.

VIII. CONCLUSIONS AND FUTURE WORK

With the wide adoption of microservice architecture by cur-
rent large-scale online systems, service monitoring and RCA
face new challenges. For an RCA method, its performance
in terms of accuracy and efficiency, as well as its ability to
support multi-granular and code-level root cause localization
are both critical for operations staff to keep online services
running healthy. In this article, we propose TrinityRCL, which,
to the best of our knowledge, is the first method using three
different types of telemetry data to perform multi-granular RCA
in microservice systems. TrinityRCL exploits multiple types of
telemetry data to construct a causal graph with which service
anomalous symptoms are correlated to infer the anomalous mi-
croservices. At this early stage, TrinityRCL shows great potential
to localize root causes at multiple levels of granularity with
its unique ability of localization at the finest code-level. It can
outperform other methods in terms of accuracy at the same level
of granularity and is particularly effective to support large-scale
systems with massive telemetry data. Furthermore, it improves
the accuracy of root cause localization in circumstances where
dynamic invocation and nondeterministic anomaly propagation
co-exist.

However, we also notice several limitations when we apply
TrinityRCL in the real-world production environment. To this
end, we suggest several topics for future work. First, it would
be valuable to design and implement a strategy that is able
to dynamically set various constants in TrinityRCL in order
to accommodate different microservice systems. For example,

some feedback mechanisms can be used to adjust these constants
in a dynamic manner to find the best combination of parameter
values. Second, data plays a vital role in RCA, and there are
very few studies using all the three types of telemetry data to
support RCA. More research endeavor is required to optimize
RCA based on multiple sources of telemetry data. For example,
one important topic is to improve the quality of telemetry data.
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