
How Do Developers’ Profiles and Experiences
Influence their Logging Practices? An Empirical

Study of Industrial Practitioners
Guoping Rong†, Shenghui Gu∗, Haifeng Shen‡, He Zhang†, Hongyu Kuang†

∗†the State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China.
‡the HilstLab, Peter Faber Business School, Australian Catholic University, Sydney, Australia.
∗shenghui.gu@smail.nju.edu.cn †{ronggp, hezhang, khy}@nju.edu.cn ‡haifeng.shen@acu.edu.au

Abstract—Logs record the behavioral data of running programs
and are typically generated by executing log statements. Software
developers generally carry out logging practices with clear
intentions and associated concerns (I&Cs). However, I&Cs may not
be properly fulfilled in source code as log placement — specifically
determination of a log statement’s context and content — is
often susceptible to an individual’s profile and experience. Some
industrial studies have been conducted to discern developers’ main
logging I&Cs and the way I&Cs are fulfilled. However, the findings
are only based on the developers from a single company in each
individual study and hence have limited generalizability. More
importantly, there lacks a comprehensive and deep understanding
of the relationships between developers’ profiles and experiences
and their logging practices from a wider perspective. To fill
this significant gap, we conducted an empirical study using
mixed methods comprising questionnaire surveys, semi-structured
interviews, and code analyses with practitioners from a wide range
of companies across a variety of industrial domains. Results reveal
that while developers share common logging I&Cs and conduct
logging practices mainly in the coding stage, their profiles and
experiences profoundly influence their logging I&Cs and the way
the I&Cs are fulfilled. These findings pave the way to facilitate
the acceptance of important logging I&Cs and the adoption of
good logging practices by developers.

Index Terms—Logging practice, Intention, Concern, Fulfill

I. INTRODUCTION

As a common type of runtime data, logs record the dynamic
behavior of software systems and thus play a vital role in
the daily tasks in software development and operations [1].
Logging is widely used in modern software development
and maintenance [2] to obtain logs that facilitate quality
management practices such as debugging [3]–[5], performance
bottleneck analysis [6], [7], and test analysis [8], [9]. In
some scenarios, information in logs is believed to be the only
available data source in production environments for failure
diagnosis [10]–[13]. Apparently, high-quality logs require
well-established logging practices, in which a considerable
number of challenges need to be tackled, as revealed in several
studies [14]–[16].

In fact, logging practices have received long-term attention
from both software engineering practitioners and researchers,
resulting in many advanced logging approaches, frameworks,
and tools [14]. However, the current state-of-the-practice is far
from satisfactory [17] as the mainstream logging practices
still require developers to manually place log statements

into source code by determining its context (where to log)
and content (what to log). The so-called 2-W questions are
often susceptible to an individual’s profile (e.g., role) and
experience (e.g., whether to follow logging guidelines). As a
result, the effectiveness of logging practices and the quality
of the generated logs vary widely [13]. To address this issue,
some researchers pointed out that logging practices should
accumulate and learn from the best practices [18], [19]. This
raises the necessity to understand how developers think, design,
and enact log instrumentation. However, only a few empirical
studies were conducted to understand developers’ logging
practices. In particular, each study only surveyed developers
from a single company, thus limiting the generalizability of its
findings. More importantly, no work has been done to establish
the relationship between developers’ profiles and experiences
and their logging practices.

In practice, developers carry out logging practices with clear
Intentions, e.g., to record the values of important variables,
and associated Concerns as there are side effects in executing
log statements [23]–[26], e.g., performance overhead, as too
many log statements may lead to performance decline [18] and
incautious log statements may also bring in security risks [27].
In log placement, developers need to consider both Intentions
and Concerns (I&Cs) to balance between the benefits and costs
of carrying out logging practices. Therefore, it is important to
understand developers’ I&Cs and the way they are fulfilled
through log placement as without such an understanding, it
may be difficult, if not entirely impossible, to comprehend,
learn and adopt good logging practices [10].

In the past few years, only a few empirical studies were
conducted to discern the main logging I&Cs and their fulfill-
ment, which are listed in Table I. For example, developers’
coding behaviors may be directly influenced by specific coding
conventions for logging practices in different organizations.
However, these findings were only based on the developers
from a single company in each individual study, which are
hence subject to external validity limitations. Furthermore,
synthesizing conclusions across these studies does not lead to
new findings. More importantly, as developers are different
from one another in terms of their profiles and their experiences
of conducting logging practices, one should adopt the logging
practices suggested by another only if they share similar profiles

855

2023 IEEE/ACM 45th International Conference on Software Engineering (ICSE)

1558-1225/23/$31.00 ©2023 IEEE
DOI 10.1109/ICSE48619.2023.00080

20
23

 IE
EE

/A
CM

 4
5t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 S
of

tw
ar

e
En

gi
ne

er
in

g
(IC

SE
) |

 9
78

-1
-6

65
4-

57
01

-9
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IC

SE
48

61
9.

20
23

.0
00

80

Authorized licensed use limited to: University of Ottawa. Downloaded on June 26,2024 at 19:19:39 UTC from IEEE Xplore. Restrictions apply.

TABLE I
EMPIRICAL STUDIES ON LOGGING PRACTICES IN INDUSTRY.

Empirical
Study

Origin of
Participants

No. of
Projects

Research Method Research Questions Research Findings

Fu et
al. [20]

1 2 • Code analysis
• Questionnaire

survey

1) Categories of logged code
snippets

2) Factors developers consider
to determine whether to log
or not

3) Automatic determination of
where to log

1) There are five categories of logged snippets, including assertion-check
logging, return-value-check logging, exception logging, logic-branch
logging, and observing-point logging.

2) Main factors considered for logging include exception type, functions,
and variables, while reasons of not logging include passing the logging
decision to subsequent operations, recoverable exceptions, and non-
critical exceptions.

3) Predicting where to log is feasible, but it requires further exploration.

Pecchia et
al. [21]

1 1 • Code analysis
• Log inspection
• Interview

1) Developers’ logging inten-
tions

2) Procedures developers used
to fulfill logging intentions

3) Impact of industry practices
on logging

1) There are three major logging intentions: state dump, execution tracing
and event reporting.

2) While logging is strongly developer-dependent, fulfillment of logging in
source code shares common patterns despite the adoption of different
logging procedures and the lack of common rules.

3) Industry practices impact logging, for example, lack of company-wide
logging regulations leads to a variety of log collection mechanisms and
formats in the same software product.

Rong et
al. [22]

1 3 • Interview
• Code analysis

1) Developers’ awareness and
understanding of logging
practices

2) Developers’ I&Cs when con-
ducting logging practices

3) Extent of I&Cs’ fulfillment
in source code

4) Potential improvement of log-
ging practices

1) Logging practices are commonly adopted in software development by
the company.

2) Common intentions include error debugging, system behavior under-
standing, and performance diagnosis, while common concerns involve
I/O, memory, CPU, and storage overheads.

3) A considerable proportion of developers’ I&Cs are not fulfilled in the
source code due to negligence and code modification.

4) Potential improvement opportunities include enhanced supporting tools
and logging guidelines.

This work 42 12 • Questionnaire
survey

• Interview
• Code analysis

1) Influence of developers’ pro-
files on their logging I&Cs

2) Influence of developers’ ex-
periences on the way their
logging I&Cs are fulfilled

1) Developers’ I&Cs may change with time, and novice developers have
significantly less logging intentions and are much less concerned about
the side effects, but they improve very quickly (within one year) and
after that grow slowly with time.

2) Developers who consider log placement in early software development
stages and who adopt logging guidelines better fulfill their logging
I&Cs.

and experiences. However, these studies did not attempt to
understand how developers’ logging practices were influenced
by their profiles and experiences.

Therefore, to facilitate the adoption of these findings, it is
crucial to understand the relationships between developers’
profiles and experiences and their logging practices from the
perspectives of I&Cs and the way I&Cs are fulfilled. This study
aims to fill this significant gap through an empirical study using
mixed methods [28] comprising questionnaire surveys, semi-
structured interviews, and code analyses involving practitioners
from a wide range of companies across a variety of industrial
domains. It addresses two research questions. One is about how
developers’ profiles influence their logging I&Cs. The other
is about how developers’ experiences influence the way their
logging I&Cs are fulfilled. We have made two key findings.
One is that developers’ I&Cs may change with time, and novice
developers have significantly less logging intentions and are
much less concerned about the side effects, but they improve
very quickly (within one year) and after that grow slowly with
time. The other is that developers who consider log placement
in early software development stages and who adopt logging
guidelines better fulfill their logging I&Cs.

The main contributions of this study are as follows:
• We conducted a mixed-method empirical study to collect

evidence with respondents from a wide range of companies
across a variety of industrial domains.

• We triangulated multiple sources of evidence to gain

insight into how developers’ profiles and experiences
influence their logging practice from the perspectives of
their logging I&Cs and the way I&Cs are fulfilled.

• We recommended good logging practices to practitioners
and industry organizations. For example, training and
adoption of logging guidelines are both effective ways to
help novice developer to perform logging practices, while
considering I&Cs in early development stages other than
the coding stage may better fulfill logging I&Cs.

The rest of the paper is organized as follows. Section II
introduces some related work. Section III describes the research
method and process, followed by the results and findings in
Section IV. Sections V and VI discuss the findings and the
validity risks pertinent to the study, respectively. Section VII
concludes the paper with a summary of major findings.

II. RELATED WORK

In this section, we introduce empirical studies that were
conducted to understand logging practices in industry. Due to
information security, profitability requirements, and the likes,
it is much harder to obtain source code and log statements in
industrial projects than in open source projects. As a result,
the majority of studies investigate open source projects, while
only a few studies investigate logging practices in industrial
projects. Nevertheless, compared to the scattered developers in
open source projects, developers in industrial projects are more
likely to be co-located and as such it is possible to understand

856

Authorized licensed use limited to: University of Ottawa. Downloaded on June 26,2024 at 19:19:39 UTC from IEEE Xplore. Restrictions apply.

their logging practices through ethnographic methods such as
interview. The existing empirical studies listed in Table I all
center around logging I&Cs and their fulfillment in source
code through log placement [20]–[22]. However, all of them
only surveyed developers from a single company and engaged
in the code analysis of 1–3 software development projects.

In particular, Fu et al. [20] explored logging decisions
on where to log through code analysis of two projects and
a questionnaire survey at Microsoft. They identified five
categories of logged snippets and discovered that the main
factors considered for logging are exception type, functions,
and variables. They also discussed the reasons of not logging
including passing the logging decision to subsequent operations,
recoverable exceptions, and non-critical exceptions. They
further proved the feasibility of predicting where to log.

Pecchia et al. [21] analyzed the code and inspected the log
entries of an industrial software platform in the transportation
domain. They interviewed several developers from different
teams involved in the project at Selex ES who were pursuing
different log analysis goals in order to understand developers’
common logging intentions, the procedures developers used
to fulfill the intentions, and the impact of the company’s
practices on logging. They identified the three common logging
intentions of state dump, execution tracing and event reporting.
They further discovered that while logging is strongly developer-
dependent, fulfillment of logging in source code shares common
patterns despite the adoption of different logging procedures
and the lack of common rules. They also confirmed that industry
practices impact logging, for example, lack of company-
wide logging regulations leads to a variety of log collection
mechanisms and formats in the same software product.

Rong et al. [22] interviewed developers from a leading
IT company to understand their logging intentions and the
associated concerns in conducting logging practices as well
as the fulfillment of logging in source code and analyzed the
code of three software projects to triangulate their claimed
logging practices. They identified the common logging inten-
tions of error debugging, system behavior understanding, and
performance diagnosis and the common concerns involving I/O,
memory, CPU, and storage overheads. They further revealed
that a considerable proportion of I&Cs were not fulfilled in
the source code due to negligence and code modification.

These studies have painted a clear picture of common logging
I&Cs and their practical fulfillment in source code. Our work
distinguishes itself from the above studies in that it is conducted
to establish a comprehensive and deep understanding of the
relationships between developers’ profiles and experiences and
their logging practices from the perspectives of I&Cs and the
way I&Cs are fulfilled with evidence from 42 companies across
different industrial domains.

III. RESEARCH METHOD

An overview of the research method and process is shown in
Fig. 1. In this section, we elucidate our study method, including
research questions, study design, and study execution.

A. Research questions

To guide our research, we first describe the goal of this study
using a Goal-Question-Metric (GQM) [29] style as follows:

To investigate and analyze current logging practices
For the purpose of understanding the relationships between

developers’ profiles and experiences and their logging practices
from the perspectives of I&Cs and the way I&Cs are fulfilled

In the context of real-world software projects in a wide
range of companies across a variety of industrial domains.

To achieve the research goal, we define the following
research questions:

RQ1: How do developers’ profiles influence their logging
I&Cs?

RQ1 aims to investigate how developers’ I&Cs that drive
their logging practices are influenced by their profiles charac-
terized by their roles and years of working. The findings from
RQ1 will establish a clear relationship between developers’
profiles and their logging I&Cs.

RQ2: How do developers’ experiences influence the way
their logging I&Cs are fulfilled?

RQ2 aims to shed some light on the extent developers’ I&Cs
are fulfilled in source code through log placement and further
investigate how the way their I&Cs are fulfilled is influenced
by their own experiences, especially in terms of the timing of
conducting logging practices and the tendency to following
logging guidelines/coding conventions. Therefore, we divide
RQ2 into three sub-questions:

(1) RQ2.1: How much are logging I&Cs satisfied in log
statements?

(2) RQ2.2: How do development stages in which logging
I&Cs are fulfilled influence the degree of satisfaction?

(3) RQ2.3: What role do logging guidelines/coding
conventions play in the fulfillment of logging I&Cs?

It should be noted that as logging guidelines are very much
likely contained in coding conventions (e.g., [30]), we only
investigate the influence of guidelines on the fulfillment of
logging I&Cs involving coding-related activities. It is also
noteworthy that a developer’s experience is likely pertinent
to their profile, which may indirectly influence the way their
logging I&Cs are fulfilled. The findings from RQ2 will establish
a relationship between developers’ profiles, experiences and
the way their I&Cs are fulfilled.

B. Study design

To collect necessary evidence and ensure its validity, we
applied a mixed-method study that combined a structured
questionnaire survey and a series of semi-structured inter-
views supplemented by code analysis. Different sources of
evidence played different roles in the analysis. Specifically,
all the statistical results were only derived from the answers
to the questionnaire. The interview and the code analysis
provided supplementary evidence to confirm or contradict the
observations from the questionnaire.

857

Authorized licensed use limited to: University of Ottawa. Downloaded on June 26,2024 at 19:19:39 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. The research process.

1) Draft preparation: In order to collect the required
evidence in a relatively formal way, a questionnaire and an
interview script need to be prepared before carrying out the
study. We devised the questionnaire and the interview script in
iterations to guarantee their effectiveness in helping us obtain
the necessary evidence. A series of meetings involving all the
authors were held to prepare the first version. The focus of
these meetings was to make sure that the topics relevant to the
RQs were all covered. We also sought to control the size of the
questionnaire by removing potentially redundant questions and
merging the questions if the answers to them contained similar
information or the answers to one question could be derived
from the answers to other questions. More importantly, for the
purpose of triangulation, we made sure that any information
that could come from both sources of evidence was indeed
covered in both questionnaire and interview.

2) Piloting: We conducted several pilot studies whose
feedback was used to improve the quality of the designed
questionnaire and that of the prepared interview script. For the
questionnaire, we applied a non-systematic sampling strategy
to carry out 15 pilot studies as the individuals of the entire
population were unknown, and it was a small-scale survey [31].
As we deployed the survey on a publicly accessible website,
the survey was self-recruited in which the respondents were
able to get to know the survey questions and also free to decide
whether to participate, and consequently, the individuals of the
entire population were unknown. Through this non-systematic
sampling process, we contacted and selected convenient persons
to act as respondents based on their available time and working
experience relevant to logging practices, who were given access
to the draft questionnaire and asked to finish the online survey in
one week. We specifically sough feedback on the questionnaire,
e.g., the difficulty in understanding the questions, the degree of
comfort to provide answers, and possible missing parts. All the
gathered information was analyzed and discussed by the entire
research team to improve the questionnaire. As the last step,
we optimized the questionnaire according to a guideline [31]
by further re-calibrating the order of questions and the skip-
patterns. The final version of the questionnaire consisted of

23 closed-ended and 3 open-ended questions.1 The first 6
questions were designed to obtain respondents’ demographic
information such as backgrounds and roles. The subsequent
17 questions were designed to acquire their attitudes towards
logging practices, while the remaining 3 open-ended questions
were for us to facilitate the subsequent interviews.

As the questionnaire was not suitable for setting up and
processing open-ended questions, we conducted a series of
interviews to obtain fine-grained data. Another reason was that
the respondents may have a cognitive bias when answering the
questionnaire, i.e. the actual logging practices may be incon-
sistent with what respondents answered in the questionnaire.
We carried out 5 pilot studies to improve the interview script.
However, the major difference between the ways we treated
the questionnaire and the interview script is that interviews
rely heavily on conversation; therefore, in addition to verifying
the content of the questions on the interview script, we focused
more on the way the questions were raised, e.g., we prefer
asking ‘how-to’ questions to encourage more conversation.
Finally, we formulated totally 21 open-ended questions and
designed semi-structured interviews, where questions were
planned but not necessarily asked in the same order as they were
listed, as semi-structured interviews allow for improvisation
and exploration of the issues raised in the conversation.

C. Study execution

In this section, we describe the execution of our study, first
the questionnaire survey and then interviews.

1) Questionnaire survey: We deployed the questionnaire
survey on Tencent questionnaire, which provides rich features
to support questionnaire preparation, release and recovery,
and statistical analysis. The questionnaire was then distributed
through a variety of channels, including social media, instant
messaging, and technical summits. Besides, we also invited
experts from several top-tier companies based on the scale of
both their employees and the use base of their products. We
received a total of 91 valid responses from 42 companies.

1The questionnaire and the interview script are accessible at
https://figshare.com/s/6b97f36f4ea75994360f.

858

Authorized licensed use limited to: University of Ottawa. Downloaded on June 26,2024 at 19:19:39 UTC from IEEE Xplore. Restrictions apply.

0 20 40 60 80 100
Percentage of Responses

Transaction management

Recovery

Regulation

User behavior analysis

Monitoring

Troubleshooting

9.3

16

20

42.7

73.3

98.7

Developers' Logging Intentions

0 10 20 30 40 50 60
Percentage of Responses

Others

Network overhead

Memory overhead

CPU overhead

Security risk

I/O overhead

Storage overhead

1.3

28

41.3

48

54.7

64

65.3

Developers' Logging Concerns

Fig. 2. Developers’ common logging intentions and the associated concerns.

2) Semi-structured interviews: We recruited volunteers from
the respondents who participated in the questionnaire survey.
In total, we interviewed 20 developers from 12 companies,
and the average duration of each interview was 34 minutes.
To collect the interview data, we documented key points and
audio-recorded the interviews throughout as a backup for the
subsequent analysis. Two researchers participated in all the
interviews, during which one of them asked questions, while the
other supplemented questions and also acted as the timekeeper.
It is worth noting that we added code analysis at the end of each
interview in order to further substantiate the interviewees’ actual
logging practices in their work as a triangulation mechanism.
In the code analysis, we asked the interviewees to provide
representative code snippets they had written that contained
log statements, which should, but may not, be in line with the
answers they provided regarding log placement. By checking
the log statements in these code snippets, we were able to
assess the actual extent the interviewees’ I&Cs were correctly
fulfilled in source code. When major inconsistencies occurred
between the interview answers and results from code analysis,
we conducted follow-up interviews to uncover the root causes.

D. Data synthesis and analysis

To answer the research questions, we applied both quanti-
tative and qualitative data synthesis and analysis methods, as
both types of data were involved in this study. These methods
include descriptive statistics for synthesizing and analyzing the
quantitative data involved in the questionnaire survey, thematic
analysis for identifying developers’ common logging I&Cs,
and narrative analysis for understanding how interviewees
expressed their logging I&Cs. Consensus is built among the
entire research team in iterations. For example, to perform the
coding in thematic analysis, the entire research team worked
together to reach consensus by applying a simple voting rule
where one voter can ‘agree/disagree/be neutral’ with a decision
and a decision can only accepted if it has at least one advocate
and no opponent. Any disagreement was openly discussed and
a new round of voting was then conducted.

IV. RESULTS

This section analyzes the results and presents the findings
from the mixed-method study.

A. RQ1: Influence of developers’ profiles on their logging I&Cs

We first report the common I&Cs identified in this study.
1) Common I&Cs: According to the results of the ques-

tionnaire shown in Fig. 2, almost all developers mentioned
that their primary logging intentions were for troubleshooting
(98.7% of the responses) and monitoring (73.3%), followed
by user behavior analysis (42.7%), regulation (20%), recovery
(16%), and transaction management (9.3%). Our interviews
also confirmed that the primary logging intentions were for
troubleshooting and monitoring, which were claimed by 14
(70% of interviewees) and 7 (35%) interviewees respectively
and consistent with the findings in previous studies [21], [22].

“The logs collected by our project are currently used mainly
for problem diagnosis and data monitoring.” – Developer
h3@Company H
Figure 2 shows that I/O and storage overheads were deemed

the most important concerns, mentioned by 65.3% and 64% of
the respondents respectively, followed by security risk (54.7%)
and overheads of CPU (48%), memory (41.3%), and network
(28%). I/O cost is usually the main bottleneck of a software
system compared to other overheads [32], e.g., CPU overhead.
Thus, developers pay more attention to the impact of log
statements on I/O, which was confirmed by the interview and
consistent with the finding in a previous study [22].

“Some situations may result in a large amount of logs, which
can be very disruptive to the execution of the program.
Such output of massive logs should be seriously avoided.”
– Developer h4@Company H
Another widely recognized concern was security risk, i.e.

log statements may contain sensitive information, which again
was highlighted by the majority of the respondents. Although
it is not a brand new concern, according to a recent systematic
review [17], the fact that more than half of the respondents
mentioned this concern highlights the increasing awareness of
information security risks when conducting logging practices.

“There are strict requirements for the security of log state-
ments, and sensitive information should not be recorded in
the logs.” – Developer b1@Company B

859

Authorized licensed use limited to: University of Ottawa. Downloaded on June 26,2024 at 19:19:39 UTC from IEEE Xplore. Restrictions apply.

Finding 1

While troubleshooting and monitoring, and the over-
heads of I/O and storage were the primary logging
I&Cs respectively as reported by previous studies, this
mixed-method study confirmed the finding and more
importantly identified an additional primary logging
concern — security risk.

2) Relationship between developers’ profiles and their log-
ging I&Cs: To understand whether logging I&Cs are developer-
dependent, we conducted a cross analysis between developers’
logging I&Cs and their profiles in terms of their roles and
years of working respectively. The roles are adapted from a
survey questionnaire2 on Microsoft’s Log2 project [7]. The
years of working are based on our interactions with industrial
practitioners who often classify themselves as novice (<1 year),
junior (1–3 years), intermediate (3–5 years), experienced (5–10
years), and very experienced (>10 years). With the results in
Table II and Table III, we make the following observations.

1) Troubleshooting and monitoring are the primary logging
intentions across all developers, regardless of their roles
and years of working.

2) Developers with specific roles (e.g., database administra-
tor and user experience designer) may have additional
primary logging intentions (e.g., regulation, transaction
management, and user behavior analysis).

3) I/O and storage overheads are the primary logging
concerns across all developers, regardless of their roles
and years of working.

4) There is no clear relationship between developers’ logging
concerns and their roles, however, the focus of each role’s
concerns is not consistent.

5) Developers with less than one year of working hardly
consider any security risk.

6) Developers with more years of working are more con-
cerned about all types of identified logging side effects.

Finding 2

Developers’ profiles influence their logging I&Cs in
that: (1) developers with specific roles may have addi-
tional primary logging intentions, and (2) the obvious
dividing line is 1 year of working experience. Those
with less than one year of working have significantly
less logging intentions and are much less concerned
about the side effects than others, implying that a
comprehensive awareness of the importance of I&Cs in
logging practices can be established relatively quickly,
but it grows slowly with time.

B. RQ2: Influence of developers’ experiences on the way their
logging I&Cs are fulfilled

We first get developers’ overall perception of the extent
to which their logging I&Cs are fulfilled through placement

2Also available at https://figshare.com/s/6b97f36f4ea75994360f.

of log statements in source code and then analyze how their
experiences may impact the fulfillment of their logging I&Cs.

Strongly disagree
6.6%

Disagree

6.6%

Undecided

28.6%

Agree

46.2%
Strongly agree

12.1%

Fig. 3. In practices, does the information contained in the log file generated
by the final log statement meet your expectations?

1) RQ2.1: Extent to which log statements are in line with
developers’ logging I&Cs: After analyzing the answers to the
question in Fig. 3, we found that 46.2% of the respondents
thought information recorded in log statements was fairly
consistent with expectations, 12.1% thought it was fully
consistent, and 6.6% did not comply at all. Most respondents
were satisfied with the results of their logging practices, which
was confirmed by 13 (65%) interviewees. However, 5 (25%)
interviewees also mentioned that logging practices that met
their expectations underwent multiple rounds of optimization.

“Existing logging practices can meet expectations to a large
extent, but it usually takes two or three iterations to get it
more perfect.” – Developer b3@Company B
However, based on the results of code analysis, it was

revealed that for 16 (80%) interviewees, the way the log
statements were implemented in the code they had written
differed from that they had previously stated. This discovery
suggests that the extent to which log statements are in line
with developers’ logging I&Cs is actually lower than what
they perceive. Common inconsistencies including missing log
statements (12 interviewees, 60%), redundant log statements
(6, 30%), wrong level/content of log statements (4, 20%),
and security issues (2, 10%). For example, after reviewing
1,568 lines of code from one interviewee, 14 inconsistencies
were exposed. Based on our follow-up interviews, interviewees
acknowledged that the main reason for these inconsistencies
was developers’ negligence, and, in a few cases, was to meet
specific business requirements, which is consistent with the
finding in a previous study [22].

“There is no log statement instrumented in the ‘Catch’ block
because it was omitted when copying and pasting from
other code snippets.” – Developer a1@Company A
2) RQ2.2: Timing of conducting logging practices by de-

velopers: According to the survey responses, developers’
I&Cs were fulfilled in different development stages [33], [34],
primarily in the coding stage (81.3%), followed by testing
(48%), detailed design (45.3%), operations (40%), system

860

Authorized licensed use limited to: University of Ottawa. Downloaded on June 26,2024 at 19:19:39 UTC from IEEE Xplore. Restrictions apply.

TABLE II
DISTRIBUTION OF LOGGING I&CS OVER DEVELOPERS’ ROLES.

Developer’s role

R&D‡ Operator Tester PM‡ TS‡ DBA‡ UXD‡ Researcher Others

In
te

nt
io

n

Troubleshooting
71 (97.3%) 13 (100.0%) 8 (100.0%) 8 (100.0%) 4 (100.0%) 2 (100.0%) 3 (100.0%) 5 (100.0%) 3 (75.0%)

Monitoring†
55 (75.3%) 9 (69.2%) 4 (50.0%) 7 (87.5%) 4 (100.0%) 1 (50.0%) 3 (100.0%) 5 (100.0%) 2 (50.0%)

Regulation†

13 (17.8%) 4 (30.8%) 3 (37.5%) 2 (25.0%) 1 (25.0%) 2 (100.0%) 2 (66.7%) 2 (40.0%) 3 (75.0%)

Transaction
management† 5 (6.8%) 4 (30.8%) 3 (37.5%) 4 (50.0%) 1 (25.0%) 2 (100.0%) 2 (66.7%) 4 (80.0%) 1 (25.0%)

Recovery†
10 (13.7%) 3 (23.1%) 2 (25.0%) 2 (25.0%) 1 (25.0%) 0 (0.0%) 1 (33.3%) 2 (40.0%) 1 (25.0%)

User behavior
analysis 26 (35.6%) 6 (46.2%) 3 (37.5%) 3 (37.5%) 1 (25.0%) 2 (100.0%) 2 (66.7%) 3 (60.0%) 1 (25.0%)

C
on

ce
rn

CPU overhead
38 (52.1%) 6 (46.2%) 5 (62.5%) 4 (50.0%) 2 (50.0%) 0 (0.0%) 2 (66.7%) 3 (60.0%) 4 (100.0%)

I/O overhead
47 (64.4%) 8 (61.5%) 5 (62.5%) 4 (50.0%) 3 (75.0%) 1 (50.0%) 2 (66.7%) 4 (80.0%) 4 (100.0%)

Memory
overhead 27 (37.0%) 7 (53.8%) 6 (75.0%) 2 (25.0%) 3 (75.0%) 2 (100.0%) 2 (66.7%) 3 (60.0%) 2 (50.0%)

Network
overhead 20 (27.4%) 3 (23.1%) 2 (25.0%) 2 (25.0%) 0 (0.0%) 1 (50.0%) 1 (33.3%) 2 (40.0%) 2 (50.0%)

Storage
overhead 48 (65.8%) 10 (79.6%) 5 (62.5%) 6 (75.0%) 2 (50.0%) 1 (50.0%) 3 (100.0%) 4 (80.0%) 3 (75.0%)

Security risk
35 (47.9%) 8 (61.5%) 7 (87.5%) 8 (100.0%) 2 (50.0%) 1 (50.0%) 3 (100.0%) 4 (80.0%) 4 (100.0%)

† Monitoring refers to the logging of runtime status of a program, such as the time taken for a code fragment to execute; Regulation refers to that logging is a work requirement
set by the company or project team; Transaction management refers to management of transactions by using logs; Recovery refers to the use of information recorded in logs to
restore a failed service.

‡ R&D (Research&Development engineer); PM (Project Manager); TS (Technical Support); DBA (DataBase Administrator); UXD (User eXperience Designer).

TABLE III
DISTRIBUTION OF LOGGING I&CS OVER DEVELOPERS’ YEARS OF WORKING.

Developer’s working experience

Under 1 year 1 to 3 years 3 to 5 years 5 to 10 years Over 10 years

In
te

nt
io

n

Troubleshooting 6 (100.0%) 12 (92.3%) 19 (100.0%) 31 (93.9%) 20 (100.0%)

Monitoring† 3 (50.0%) 10 (76.9%) 13 (68.4%) 22 (66.7%) 18 (90.0%)

Regulation† 2 (33.3%) 3 (23.1%) 5 (26.3%) 4 (12.1%) 5 (25.0%)

Transaction management† 0 (0.0%) 1 (7.7%) 2 (10.5%) 3 (9.1%) 6 (30.0%)

Recovery† 0 (0.0%) 3 (23.1%) 4 (21.1%) 4 (12.1%) 3 (15.0%)

User behavior analysis 1 (16.7%) 4 (30.8%) 4 (21.1%) 15 (45.5%) 8 (40.0%)

C
on

ce
rn

CPU overhead 2 (33.3%) 5 (38.5%) 12 (63.2%) 14 (42.4%) 15 (75.0%)

I/O overhead 5 (83.3%) 6 (46.2%) 14 (73.7%) 19 (57.6%) 15 (75.0%)

Memory overhead 2 (33.3%) 5 (38.5%) 9 (47.4%) 12 (36.4%) 9 (45.0%)

Network overhead 1 (16.7%) 3 (23.1%) 5 (26.3%) 10 (30.3%) 6 (30.0%)

Storage overhead 4 (66.7%) 8 (61.5%) 8 (42.1%) 23 (69.7%) 15 (75.0%)

Security risk 0 (0.0%) 6 (46.2%) 13 (68.4%) 18 (54.5%) 13 (65.0%)
† The same as Table II.

861

Authorized licensed use limited to: University of Ottawa. Downloaded on June 26,2024 at 19:19:39 UTC from IEEE Xplore. Restrictions apply.

TABLE IV
DISTRIBUTION OF THE MAIN SDLC STAGES WHERE LOGGING PRACTICES ARE PERFORMED OVER DEVELOPER’S YEARS OF WORKING.

Stage
Developer’s working experience

Under 1 year 1 to 3 years 3 to 5 years 5 to 10 years Over 10 years

Requirement engineering 2 (33.3%) 1 (7.7%) 3 (15.8%) 10 (30.3%) 12 (60.0%)

System design 0 (0.0%) 2 (15.4%) 5 (26.3%) 13 (39.4%) 12 (60.0%)

Detailed design 2 (33.3%) 3 (23.1%) 9 (47.4%) 16 (48.5%) 12 (60.0%)

Coding 6 (100.0%) 12 (92.3%) 15 (78.9%) 24 (72.7%) 17 (85.0%)

Testing 4 (66.7%) 6 (46.2%) 7 (36.8%) 13 (39.4%) 10 (50.0%)

Operations 2 (33.3%) 4 (30.8%) 5 (26.3%) 12 (36.4%) 12 (60.0%)

design (30.7%), and requirements engineering (26.7%), as
show in Fig. 4.

0 10 20 30 40 50 60 70 80
Percentage of Responses

Requirements engineering

System design

Operations

Detailed design

Testing

Coding

26.7

30.7

40

45.3

48

81.3

Logging Stages

Fig. 4. Development stages where logging I&Cs are fulfilled.

Through a cross analysis between the development stages
where logging I&Cs were fulfilled and developers’ years
of working, as shown in Table IV, we observed that most
developers performed logging practices in the coding stage
regardless of their years of working.

“I only consider inserting log statements when I am coding.
Usually it is a subjective judgment of where the log
statements need to be inserted.” – Developer c1@Company
C
It was further discovered that more experienced developers

tend to consider logging practices in more and earlier stages.
For example, developers with more than 10 years of work-
ing often spread logging practices over the entire software
development life cycle (SDLC).

“The way the logs are output and stored is taken into
account during project design, such as whether the logs are
output at module or class granularity or through traces;
whether the logs need to be fed into the monitoring system;
and whether the logs are stored locally or centrally.” –
Developer h3@Company H
Figure 5 shows the relationship between the extent to which

log statements satisfy logging I&Cs and the SDLC stage during
which developers consider log placement. A higher value (1–
5) means that the current logging practice is more capable
of satisfying logging I&Cs. In general, the earlier the log

placement is taken into consideration in the SDLC, the better
the logging practices reflect the developers’ logging I&Cs. The
Mann Whitney U tests for the differences between ‘Requirement
engineering’ and ‘coding’ and between ‘system design’ and
‘coding’ resulted in both p-values less than 0.05, indicating the
null hypothesis (i.e. no significant difference between the two
sets of data) can be rejected.

Requirement
engineering

System
design

Detailed
design

Coding Testing Operations

4.3

4.4

4.5

4.6

4.7

4.8

4.9

De
gr

ee
 o

f c
on

sis
te

nc
y

wi
th

 e
xp

ec
ta

tio
ns

4.89

4.75

4.4
4.36

4.28

4.43

Fig. 5. Influence of the timing of conducting logging practices on the extent
of fulfilling I&Cs.

3) RQ2.3: Role of logging guidelines/coding conventions:
According to the results of the questionnaire, 48.0% of the
respondents would follow logging guidelines to a large extent,
26% always, while only 4% would not follow them at all, as
shown in Fig. 6.

Never follow4.0%

Not follow

4.0%

Neutral

18.0%

Follow 48.0%

Always follow

26.0%

Fig. 6. Developers’ tendency to following logging guidelines.

Furthermore, as listed in Table V, the primary guideline
developers would follow is for defining log statement severity

862

Authorized licensed use limited to: University of Ottawa. Downloaded on June 26,2024 at 19:19:39 UTC from IEEE Xplore. Restrictions apply.

(80%), followed by that for the types of code snippets requiring
log statements (62%), those for choosing logging variables
and appropriate logging severity as well for formatting log
statements (all 58%), that for regulating log statements (48%),
and that for reducing logging overhead (44%).

TABLE V
LOGGING GUIDELINES.

Reason # respondents Percentage

Guideline for defining log statement severity 72 80%
Guideline for the types of code snippets requiring
log statements

56 62%

Guideline on choosing logging variables 52 58%
Guideline on choosing appropriate log statement
severity

52 58%

Guideline on formatting log statements 52 58%
Guideline on regulating log statements 43 48%
Guideline on reducing logging overhead 40 44%

Developers’ tendency to following logging guidelines is
inherently influenced by their profiles, especially their years
of working, as shown in Fig. 7. We observed from the
questionnaire that developers with less than one year of working
are more likely to recognize the usefulness of the logging
guidelines, however, this attitude tends to decrease first and then
increase sharply with increased years of working experience,
which was also confirmed by the interviews.

Under 1 year 1 to 3 years 3 to 5 years 5 to 10 years Over 10 years

3.75

3.80

3.85

3.90

3.95

4.00

4.05

Ac
ce

pt
an

ce
 o

f l
og

gi
ng

 g
ui

de
lin

es

3.833

3.75

3.786

3.905

4.059

Fig. 7. Influence of developers’ years of working on their tendency to following
logging guidelines.

On the one hand, novice developers are likely to require
some guidance for conducting logging practices. After they
have gained some working experience and become reasonably
familiar with logging practices, their reliance on guidelines
would decrease gradually because a basic logging practice
guide is not much useful to developers with some experience,
whereas sophisticated questions about logging practices are
unlikely to be answered by logging guidelines. On the other
hand, developers with more than three years of working re-
endorse the value of logging guidelines often because they are
likely involved in technical management work and possibly
need to lead novice developers. At this point, they begin to
recognize the role logging guidelines play in standardizing
logging practices. As their years of working increase, the size
of the team they manage is likely to grow, and as such, logging
normalization becomes more important, and accordingly, the
guidelines become more widely recognized.

“Logging guidelines are very useful for development and
beneficial for troubleshooting errors. At the beginning of
my career, I had more confusion about how to instrument log
statements and how to use them to troubleshoot issues, and
if logging guidelines existed, I could solve these problems
without asking for help.” – Developer e1@Company E

Figure 8 illustrates the influence of using logging guidelines
on log placement in terms of the extent to which the logged
information satisfies the logging I&Cs. Evidently, logging
practices with the adoption of logging guidelines satisfy the
developers’ logging I&Cs better than those without them, which
was also confirmed by 17 (85%) interviewees. The Mann
Whitney U test on the mean value resulted in a less than 0.05
p-value, indicating that the null hypothesis (i.e. no significant
difference between the two sets of data) can be rejected.

“The logging guidelines regulate the team’s most basic
logging practice requirements, which are some of the
running behavior information that must be recorded during
the development and maintenance of software systems. The
logging guidelines allow team members to quickly and
accurately carry out the required logging practices, and
also reduce a lot of communication and management costs.”
– Developer b4@Company B

With guidelines Without guidelines

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

3.85
3.6

Fig. 8. Influence of adopting logging guidelines on the fulfillment of I&Cs.

Finding 3

Logging practices are mainly conducted in the cod-
ing stage and only partially fulfill developers’ I&Cs,
regardless of their profiles and experiences. However,
developers’ experiences influence the way their I&Cs
are fulfilled in that: (1) experienced developers with
over 10 years of working tend to consider logging
practices in early development stages, which leads
to higher satisfaction of fulfilling logging I&Cs, (2)
novice (less than 1 year of working) and experienced
(more than 3 years of working) developers are more
prone to accepting logging guidelines than intermediate
developers, and (3) developers who adopt logging
guidelines better fulfill their logging I&Cs than those
who do not.

863

Authorized licensed use limited to: University of Ottawa. Downloaded on June 26,2024 at 19:19:39 UTC from IEEE Xplore. Restrictions apply.

V. DISCUSSION

In this section, we first recommend good logging practices
and then suggest important future research directions.

A. Recommended good logging practices

Through this empirical study involving participants from 42
companies across a variety of industrial domains, we found that
developers share common logging intentions (troubleshooting
and monitoring) and concerns (I/O and storage overheads)
and conduct logging practices mainly in the coding stage,
which only partially fulfill their I&Cs, regardless of their roles
and working experience. A deeper investigation unveiled that
developers’ profiles and experiences do influence their logging
I&Cs and the way their I&Cs are fulfilled, Based on Findings
1, 2, and 3, we make the following recommendations.

• Create a habit of considering log placement in early
software development stages such as requirements engi-
neering and system design. The earlier the log placement
is considered, the more likely it is able to satisfy the
developers’ expectations of logging practices.

• Adopt available logging guidelines such as those for
defining log statement severity and those for the types of
code snippets requiring log statements. Developers who
adopt logging guidelines better fulfill their logging I&Cs
than those who do not.

• Provide appropriate training of logging practices to novice
developers with less than one year of working experience
as they can quickly establish a comprehensive awareness
of the importance of logging I&Cs.

• Provide relevant training or specific guidelines to raise the
awareness of other side effects associated with logging
practices in addition to the primary concerns of I/O and
storage overheads among junior developers with less than
three years of working experience.

• Provide relevant training or specific guidelines to raise the
awareness of security issues involved in logging practices
among novice developers with less than one year of
working experience.

• Provide relevant training or specific guidelines to raise
the awareness of important logging intentions in addition
to troubleshooting and monitoring among developers with
specific roles such as database administrator and user
experience designer.

B. Suggested future research directions

The importance of logging guidelines has been widely
recognized [2], [18], [23], [25], [26], [35], [36]. Similar
requests exist in industry, with several popular blogs discussing
the best or worst logging practices, e.g., [37], [38], which
could be taken as reference guidelines. Some world-leading
software companies have also introduced internal guidelines
for logging practices, e.g., [30]. In addition to confirming
these known facts, our study sheds new light on some of
the more specific mechanisms of logging guidelines. That
is, as a vehicle for carrying relevant experience, logging
guidelines are able to serve as a materialization of logging

I&Cs in the early stages of SDLC, guiding and standardizing
the implementation of subsequent log statements for novice
developers and facilitate management activities for senior
developers/managers. Although most of these guidelines are
so-called general-purpose guidelines which tend to only deal
with basic logging issues and can hardly cope with some
more advanced requirements of logging practices, their role in
assisting in fulfilling relatively comprehensive logging I&Cs
is still undeniable. More sophisticated logging practices in
addressing advanced I&Cs can be transformed into proper
expressions and added to these general-purpose guidelines.

TABLE VI
LOGGING GUIDELINES AND SUPPORTING TOOLS.

Wishlist # respondents Percentage

Automatic logging tools for instrumenting log
statements

60 65.9%

Pragmatic logging guidelines 57 62.6%
Logging guidelines/tools for improving the quality
of log design

37 40.7%

Automatic logging tools for assessing the validity
of log statements

36 39.6%

Features of automatic logging tools

Instrument log statements semi-automatically or
fully automatically

67 73.6%

Record the required information without being
affected by changes of business code

58 63.7%

Can be used without domain knowledge 41 45.1%
Optimize the content and location of existing log
statements automatically

30 33.0%

Supporting tools should also work with certain rules in
line with guidelines [39] or models derived from machine
learning techniques [40]. In this sense, tools play a natural
role to enact logging guidelines and fulfill logging I&Cs. For
example, Jia et al. proposed two models to describe logging
intentions, and further designed and implemented an automatic
log placement tool based on the intention models [41]. Our
study revealed that nearly two-thirds of the respondents believe
that automatic logging tools and pragmatic logging guidelines
can help developers fulfill logging I&Cs more easily when
conducting logging practices, as shown in Table VI. For
example, using logging guidelines/tools for improving the
quality of log design and using automatic tools for assessing the
validity of log statements accounted for 40.7% and 39.6% of
the respondents respectively. Specifically, for automatic logging
tools, 73.6% of the respondents wanted them to help developers
semi-automatically or automatically log the information they
need, 63.7% wanted them to be able to collect information
independent of changes in business logic, 45.1% wanted them
to be used without requiring domain knowledge, and 33.0%
wanted them to automatically optimize the content and location
of existing log statements. These remarks to a certain degree
point out future research directions and research priorities
regarding logging tools.
“Since developers tended to write log statements in different
styles despite the logging guidelines, it is preferred to
automate logging so that developers pay less attention
to instrument log statements.” –Developer b2@Company B

864

Authorized licensed use limited to: University of Ottawa. Downloaded on June 26,2024 at 19:19:39 UTC from IEEE Xplore. Restrictions apply.

VI. THREATS TO VALIDITY

This section discusses several validity risks.

A. Internal validity

Internal validity is the extent to which a study establishes a
trustworthy cause-and-effect relationship between a treatment
and an outcome. In this study, the main threat to the internal
validity arises from the personal bias in the interpretation
of the data from questionnaire surveys and interviews. In
order to control this validity risk, an iterative strategy was
applied in the process of data synthesis and analysis in which
the interpretation was performed collaboratively by multiple
researchers with cross-checking. Therefore, the threats derived
from personal bias can be mitigated. Another noteworthy threat
to the internal validity is that we did not take into account the
difference between organizations/product lines in the analysis of
survey results. The consideration is two-folded. Firstly, for RQ1,
the different roles reasonably reflect the potential difference
existing in different organizations/product lines. Secondly, for
RQ2, according to the research conducted by Pecchia et al. [21],
fulfillment of logging intentions in source code shares common
patterns despite the adoption of different logging procedures
and the lack of common rules. In this sense, we deem this
threat factor can be well controlled.

B. External validity

External validity is concerned with the extent to which
the results and findings can be generalized. One possible
threat is related to the representativeness of the respondents
and interviewees. We received 91 valid responses in the
questionnaire survey and interviewed 20 volunteer developers in
the interviews. Therefore, the results and findings in this study
may not reflect all the real status regarding logging practice in
industry. To mitigate the impact of this threat, we expanded
the scope of the questionnaire survey as much as possible,
e.g., distributing the questionnaire using as many channels as
possible, and selecting developers from different companies for
our study. As the result, we have respondents and interviewees
from 42 companies, which to a fair degree minimizes the
external validity risks. A closely related threat is the same
cultural background of the respondents and interviewees as
all the 42 companies are based in the same geographical
location. To address this risk, we share the questionnaire and
the interview script for other researchers to replicate this study
in different geographical locations.

C. Construct validity

Construct validity is concerned with the issues affecting
the extent to which the object of study truly represents
theory behind the study [42]. In this study, the main treat
related to this validity is the suitability of survey questions
in the questionnaire and the interview script. In the process
of designing the questionnaire questions and the interview
questions, we conducted pilot surveys in order to assess and
refine the questions in iterations, as described in Section III.
By this way, this threat can be largely mitigated.

VII. CONCLUSION

Logging is an important part of software development, which
captures the dynamic behavior of software systems to facilitate
other critical quality practices such as troubleshooting. Despite
that a lot of research effort has been made on logging practices,
what common I&Cs developers share, to what degree they are
fulfilled in daily development, and what factors contribute to
the differences among the developers in logging I&Cs and the
way they are fulfilled remain unclear.

In this paper, we carried out an empirical study involving
participants from a wide range of companies across a variety
of industrial domains to characterize the developers’ I&Cs
and further investigate how the I&Cs and the way they are
fulfilled are influenced by developers’ profiles and experiences.
We have made several interesting findings through this mix-
method study. First, while several common I&Cs do exist, they
also change with time. For example, security risk became a
common longing concern nowadays, yet a recent systematic
study indicates that this factor has only been covered in a small
amount of prior work in research and practice [17]. Besides, it
is clear that developers with more working experience tend to
have more diverse logging I&Cs, indicating that logging I&Cs
may change along with the increasing working experience to
address more sophisticated problems in software development.
Last but not least, logging I&Cs are only partially fulfilled
in industrial projects. How well logging I&Cs are fulfilled
depends on how early logging practices are conducted and
whether developers adopt logging guidelines.

Based on the findings, we have recommended some good
logging practices such as providing training of logging practices
to novice developers with less than one year of working
experience, providing relevant training or specific guidelines
to raise the awareness of important side effects associated with
logging practices among junior developers and the awareness
of important logging intentions among developers with specific
roles, creating a habit of considering log placement in early
software development stages, and adopting available logging
guidelines.

ACKNOWLEDGMENT

This work is jointly supported by the National Key Research
and Development Program of China (No.2019YFE0105500)
and the Research Council of Norway (No.309494), the Meituan,
the Key Research and Development Program of Jiangsu
Province (No.BE2021002-2), as well as the National Natural
Science Foundation of China (No.62072227, No.62202219).
Shenghui Gu is the corresponding author.

REFERENCES

[1] T. Barik, R. DeLine, S. Drucker, and D. Fisher, “The bones of the system:
A case study of logging and telemetry at microsoft,” in Proceedings of
the 38th International Conference on Software Engineering Companion.
Association for Computing Machinery (ACM), may 2016, pp. 14–22.
[Online]. Available: https://doi.org/10.1145/2889160.2889231

865

Authorized licensed use limited to: University of Ottawa. Downloaded on June 26,2024 at 19:19:39 UTC from IEEE Xplore. Restrictions apply.

[2] P. He, Z. Chen, S. He, and M. R. Lyu, “Characterizing the
natural language descriptions in software logging statements,” in
Proceedings of the 33rd ACM/IEEE International Conference
on Automated Software Engineering. Association for Computing
Machinery (ACM), sep 2018, pp. 178–189. [Online]. Available:
https://doi.org/10.1145/3238147.3238193

[3] Q. Fu, J.-G. Lou, Y. Wang, and J. Li, “Execution anomaly detection in
distributed systems through unstructured log analysis,” in 2009 Ninth
IEEE International Conference on Data Mining. Institute of Electrical
and Electronics Engineers (IEEE), dec 2009, pp. 149–158. [Online].
Available: https://doi.org/10.1109/icdm.2009.60

[4] W. Xu, L. Huang, A. Fox, D. Patterson, and M. I. Jordan, “Detecting
large-scale system problems by mining console logs,” in Proceedings of
the ACM SIGOPS 22nd symposium on Operating systems principles
(SOSP). Association for Computing Machinery (ACM), oct 2009, pp.
117–132. [Online]. Available: https://doi.org/10.1145/1629575.1629587

[5] D. Yuan, H. Mai, W. Xiong, L. Tan, Y. Zhou, and S. Pasupathy,
“SherLog: Error diagnosis by connecting clues from run-time logs,”
in Proceedings of the fifteenth edition of ASPLOS on Architectural
support for programming languages and operating systems (ASPLOS).
Association for Computing Machinery (ACM), mar 2010, pp. 143–154.
[Online]. Available: https://doi.org/10.1145/1736020.1736038

[6] M. K. Aguilera, J. C. Mogul, J. L. Wiener, P. Reynolds,
and A. Muthitacharoen, “Performance debugging for distributed
systems of black boxes,” ACM SIGOPS Operating Systems Review,
vol. 37, no. 5, pp. 74–89, dec 2003. [Online]. Available: https:
//doi.org/10.1145/1165389.945454

[7] R. Ding, H. Zhou, J.-G. Lou, H. Zhang, Q. Lin, Q. Fu,
D. Zhang, and T. Xie, “Log2: A cost-aware logging mechanism
for performance diagnosis,” in 2015 USENIX Annual Technical
Conference (USENIX ATC 15). Santa Clara, CA: USENIX
Association, jul 2015, pp. 139–150. [Online]. Available: https:
//www.usenix.org/conference/atc15/technical-session/presentation/ding

[8] B. Chen, J. Song, P. Xu, X. Hu, and Z. M. J. Jiang, “An automated
approach to estimating code coverage measures via execution logs,”
in Proceedings of the 33rd ACM/IEEE International Conference
on Automated Software Engineering. Association for Computing
Machinery (ACM), sep 2018, pp. 305–316. [Online]. Available:
https://doi.org/10.1145/3238147.3238214

[9] F. Horváth, T. Gergely, Á. Beszédes, D. Tengeri, G. Balogh,
and T. Gyimóthy, “Code coverage differences of java bytecode
and source code instrumentation tools,” Software Quality Journal,
vol. 27, no. 1, pp. 79–123, dec 2017. [Online]. Available:
https://doi.org/10.1007/s11219-017-9389-z

[10] H. Li, W. Shang, B. Adams, M. Sayagh, and A. E. Hassan,
“A qualitative study of the benefits and costs of logging from
developers’ perspectives,” IEEE Transactions on Software Engineering,
vol. 47, no. 12, pp. 2858–2873, dec 2021. [Online]. Available:
https://doi.org/10.1109/tse.2020.2970422

[11] D. Yuan, S. Park, and Y. Zhou, “Characterizing logging practices
in open-source software,” in 2012 34th International Conference on
Software Engineering (ICSE). Institute of Electrical and Electronics
Engineers (IEEE), jun 2012, pp. 102–112. [Online]. Available:
https://doi.org/10.1109/icse.2012.6227202

[12] X. Zhao, K. Rodrigues, Y. Luo, M. Stumm, D. Yuan, and
Y. Zhou, “Log20: Fully automated optimal placement of log printing
statements under specified overhead threshold,” in Proceedings of
the 26th Symposium on Operating Systems Principles. Association
for Computing Machinery (ACM), oct 2017, pp. 565–581. [Online].
Available: https://doi.org/10.1145/3132747.3132778

[13] G. Rong, S. Gu, H. Zhang, D. Shao, and WanggenLiu, “How
is logging practice implemented in open source software projects?
a preliminary exploration,” in 2018 25th Australasian Software
Engineering Conference (ASWEC). Institute of Electrical and
Electronics Engineers (IEEE), nov 2018, pp. 171–180. [Online].
Available: https://doi.org/10.1109/aswec.2018.00031

[14] B. Chen and Z. M. J. Jiang, “A survey of software log instrumentation,”
ACM Computing Surveys, vol. 54, no. 4, pp. 1–34, may 2022. [Online].
Available: http://dx.doi.org/10.1145/3448976

[15] J. Cândido, M. Aniche, and A. van Deursen, “Log-based software
monitoring: A systematic mapping study,” PeerJ Computer Science,
vol. 7, p. e489, may 2021. [Online]. Available: https://doi.org/10.7717/
peerj-cs.489

[16] G. Rong, Q. Zhang, X. Liu, and S. Gu, “A systematic review of
logging practice in software engineering,” in 2017 24th Asia-Pacific
Software Engineering Conference (APSEC). Institute of Electrical
and Electronics Engineers (IEEE), dec 2017, pp. 534–539. [Online].
Available: http://dx.doi.org/10.1109/APSEC.2017.61

[17] S. Gu, G. Rong, H. Zhang, and H. Shen, “Logging practices in
software engineering: A systematic mapping study,” IEEE Transactions
on Software Engineering, pp. 1–1, 2022. [Online]. Available:
https://doi.org/10.1109/tse.2022.3166924

[18] J. Zhu, P. He, Q. Fu, H. Zhang, M. R. Lyu, and D. Zhang, “Learning
to log: Helping developers make informed logging decisions,” in 2015
IEEE/ACM 37th IEEE International Conference on Software Engineering.
Institute of Electrical and Electronics Engineers (IEEE), may 2015, pp.
415–425. [Online]. Available: https://doi.org/10.1109/icse.2015.60

[19] B. Chen and Z. M. J. Jiang, “Studying the use of Java logging utilities
in the wild,” in Proceedings of the ACM/IEEE 42nd International
Conference on Software Engineering. Association for Computing
Machinery (ACM), jun 2020, pp. 397–408. [Online]. Available:
https://doi.org/10.1145/3377811.3380408

[20] Q. Fu, J. Zhu, W. Hu, J.-G. Lou, R. Ding, Q. Lin, D. Zhang,
and T. Xie, “Where do developers log? an empirical study on
logging practices in industry,” in Companion Proceedings of the
36th International Conference on Software Engineering. Association
for Computing Machinery (ACM), may 2014, pp. 24–33. [Online].
Available: https://doi.org/10.1145/2591062.2591175

[21] A. Pecchia, M. Cinque, G. Carrozza, and D. Cotroneo, “Industry
practices and event logging: Assessment of a critical software
development process,” in 2015 IEEE/ACM 37th IEEE International
Conference on Software Engineering (ICSE). Institute of Electrical
and Electronics Engineers (IEEE), may 2015, pp. 169–178. [Online].
Available: https://doi.org/10.1109/icse.2015.145

[22] G. Rong, Y. Xu, S. Gu, H. Zhang, and D. Shao, “Can you capture
information as you intend to? a case study on logging practice
in industry,” in 2020 IEEE International Conference on Software
Maintenance and Evolution (ICSME). Institute of Electrical and
Electronics Engineers (IEEE), sep 2020, pp. 12–22. [Online]. Available:
https://doi.org/10.1109/icsme46990.2020.00012

[23] B. Chen and Z. M. Jiang, “Characterizing and detecting anti-
patterns in the logging code,” in 2017 IEEE/ACM 39th International
Conference on Software Engineering (ICSE). Institute of Electrical and
Electronics Engineers (IEEE), may 2017, pp. 71–81. [Online]. Available:
https://doi.org/10.1109/icse.2017.15

[24] H. Li, W. Shang, and A. E. Hassan, “Which log level should
developers choose for a new logging statement?” Empirical Software
Engineering, vol. 22, no. 4, pp. 1684–1716, oct 2016. [Online].
Available: https://doi.org/10.1007/s10664-016-9456-2

[25] Z. Liu, X. Xia, D. Lo, Z. Xing, A. E. Hassan, and S. Li, “Which variables
should i log?” IEEE Transactions on Software Engineering, pp. 1–1,
sep 2019. [Online]. Available: https://doi.org/10.1109/tse.2019.2941943

[26] X. Liu, T. Jia, Y. Li, H. Yu, Y. Yue, and C. Hou, “Automatically
generating descriptive texts in logging statements: How far are we?”
in Programming Languages and Systems. Springer International
Publishing, nov 2020, pp. 251–269. [Online]. Available: https:
//doi.org/10.1007/978-3-030-64437-6 13

[27] R. Zhou, M. Hamdaqa, H. Cai, and A. Hamou-Lhadj, “MobiLogLeak:
A preliminary study on data leakage caused by poor logging practices,”
in 2020 IEEE 27th International Conference on Software Analysis,
Evolution and Reengineering (SANER). Institute of Electrical and
Electronics Engineers (IEEE), feb 2020, pp. 577–581. [Online].
Available: https://doi.org/10.1109/saner48275.2020.9054831

[28] J. W. Creswell and J. D. Creswell, Research design: Qualitative,
quantitative, and mixed methods approaches. SAGE Publications, 2017.

[29] V. R. Basili, “Goal question metric paradigm,” Encyclopedia of software
engineering, vol. 1, pp. 528–532, 1994.

[30] Alibaba. (2017) Alibaba Java coding guidelines. [Online]. Available:
https://alibaba.github.io/Alibaba-Java-Coding-Guidelines/

[31] T. Punter, M. Ciolkowski, B. Freimut, and I. John, “Conducting on-line
surveys in software engineering,” in Proceedings of International
Symposium on Empirical Software Engineering (ISESE). Institute
of Electrical and Electronics Engineers (IEEE), oct 2003, pp. 80–88.
[Online]. Available: https://doi.org/10.1109/isese.2003.1237967

[32] L. S. Keller, “Operating systems,” in Encyclopedia of Physical Science
and Technology. Elsevier, 2003, pp. 169–191. [Online]. Available:
https://doi.org/10.1016/b0-12-227410-5/00851-6

866

Authorized licensed use limited to: University of Ottawa. Downloaded on June 26,2024 at 19:19:39 UTC from IEEE Xplore. Restrictions apply.

[33] W. W. Royce, “Managing the development of large software systems:
Concepts and techniques,” in Proceedings of the 9th international
conference on Software Engineering, mar 1987, pp. 328–338.

[34] N. B. Ruparelia, “Software development lifecycle models,” ACM
SIGSOFT Software Engineering Notes, vol. 35, no. 3, pp. 8–13, may
2010. [Online]. Available: https://doi.org/10.1145/1764810.1764814

[35] H. Li, T.-H. P. Chen, W. Shang, and A. E. Hassan, “Studying
software logging using topic models,” Empirical Software Engineering,
vol. 23, no. 5, pp. 2655–2694, jan 2018. [Online]. Available:
https://doi.org/10.1007/s10664-018-9595-8

[36] H. Anu, J. Chen, W. Shi, J. Hou, B. Liang, and B. Qin, “An
approach to recommendation of verbosity log levels based on logging
intention,” in 2019 IEEE International Conference on Software
Maintenance and Evolution (ICSME). Institute of Electrical and
Electronics Engineers (IEEE), sep 2019, pp. 125–134. [Online].
Available: https://doi.org/10.1109/icsme.2019.00022

[37] J. Skowronski. (2017, jan) 30 best practices for logging at scale. [Online].
Available: https://www.loggly.com/blog/30-best-practices-logging-scale/

[38] L. Tal. (2017, jan) 9 logging best practices based on hands-on experience.
[Online]. Available: https://www.loomsystems.com/blog/single-post/2017/
01/26/9-logging-best-practices-based-on-hands-on-experience

[39] M. Cinque, D. Cotroneo, and A. Pecchia, “Event logs for the analysis
of software failures: A rule-based approach,” IEEE Transactions on
Software Engineering, vol. 39, no. 6, pp. 806–821, jun 2013. [Online].
Available: https://doi.org/10.1109/tse.2012.67

[40] Z. Li, T.-H. P. Chen, and W. Shang, “Where shall we log? studying and
suggesting logging locations in code blocks,” in Proceedings of the 35th
IEEE/ACM International Conference on Automated Software Engineering.
Association for Computing Machinery (ACM), dec 2020, pp. 361–372.
[Online]. Available: https://doi.org/10.1145/3324884.3416636

[41] Z. Jia, S. Li, X. Liu, X. Liao, and Y. Liu, “SMARTLOG: Place
error log statement by deep understanding of log intention,” in
2018 IEEE 25th International Conference on Software Analysis,
Evolution and Reengineering (SANER). Institute of Electrical and
Electronics Engineers (IEEE), mar 2018, pp. 61–71. [Online]. Available:
https://doi.org/10.1109/saner.2018.8330197

[42] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and
A. Wesslén, Experimentation in Software Engineering. Springer Science
& Business Media, jun 2012.

867

Authorized licensed use limited to: University of Ottawa. Downloaded on June 26,2024 at 19:19:39 UTC from IEEE Xplore. Restrictions apply.

