
How is Logging Practice Implemented in Open
Source Software Projects? A Preliminary

Exploration

Guoping Rong, Shenghui Gu†, He Zhang, Dong Shao, Wanggen Liu‡
State Key Laboratory of Novel Software Technology, Software Institute, Nanjing University, Nanjing, China

{ronggp, hezhang, dongshao}@nju.edu.cn, †dz1732002@smail.nju.edu.cn, ‡wayne.liu@transwarp.io

Abstract—Background: Logs are the footprints that software
systems produce during runtime, which can be used to un-
derstand the dynamic behavior of these software systems. To
generate logs, logging practice is accepted by developers to
place logging statements in the source code of software systems.
Compared to the great number of studies on log analysis, the
research on logging practice is relatively scarce, which raises a
very critical question, i.e. as the original intention, can current
logging practice support capturing the behavior of software sys-
tems effectively? Aims: To answer this question, we first need to
understand how logging practices are implemented these software
projects. Method: In this paper, we carried out an empirical study
to explore the logging practice in open source software projects
so as to establish a basic understanding on how logging practice
is applied in real world software projects. The density, log level
(what to log?) and context (where to log?) are measured for our
study. Results: Based on the evidence we collected in 28 top open
source projects, we find the logging practice is adopted highly
inconsistently among different developers both across projects
and even within one project in terms of the density and log
levels of logging statements. However, the choice of what context
the logging statements to place is consistent to a fair degree.
Conclusion: Both the inconsistency in density and log level and
the convergence of context have forced us to question whether it is
a reliable means to understand the runtime behavior of software
systems via analyzing the logs produced by the current logging
practice.

Keywords—log, logging practice, empirical study, Java-based

I. INTRODUCTION

Logs are generally used to record the runtime behavior of

software systems or services. A variety of software engineer-

ing tasks with diverse purposes depend on logs, for example,

debugging, monitoring, auditing, defect prediction and so

on [1]–[5]. In particular, logs are significant for software

developers and testers to diagnose failures both in testing en-

vironment and production environment [6], [7]. Sometimes it

is the only way for software engineers to deal with production

failures. Moreover, with the rise of new technologies such as

AIOps [8] in recent years, logs play an increasing important

role to provide critical information for system operations.

To produce logs, logging practice is a software engineering

practice that software developers used to put logging state-

ments here and there in the source code they developed. The

importance of logging practice has been widely recognized

in industry [9]. Apparently, to be useful, logs generated by

logging statements in the source code should be well-formed

and informative, which requires logging practice to be carried

out properly. However, it is normally difficult to make sound

decisions to determine the context of logging statements

(where to log?) and the content of logging statements (what

to log?) [10]–[12]. For example, study [13] lists several

scenarios, with which developers should not put logging

statements. Meanwhile, the content of logging statement could

also influence its capability to capture the runtime behavior

of software systems. For example, study [14] reveals that

more than half of logging statements even do not contain

any variables. These facts may raise a critical issue, i.e. can

current logging practice provide necessary and reliable support

to produce logs for further analysis? To answer this question,

we must first understand the implementation status of the

logging practice in real software projects. To the best of

our knowledge, there are very few studies in the academic

community covering this topic. In this sense, we carry out this

empirical study to explore the logging practice in real-world

software projects. Since it is not likely to obtain the source

code of commercial software systems, we mined 100 top open

source projects on GitHub, from which we extracted logging

statements to provide the data source for our investigation.

By analyzing the logging statements, we identified obvious

inconsistence both across projects and within each project in

terms of density and log level. In addition, the placement of

the logging statements converges. These facts to a fair degree

imply that the logging practice has not been well carried out in

these projects. In view of this, we have to question whether it

is reliable and valid to capture program behavior by analyzing

the logs.

The rest of the paper is organized as follows. Section II

briefs the related work. Section III introduces the research

objective and the approach we applied. Section IV reports

the analysis results. Section V discusses the implications. The

threats to validity are also presented in this section. Finally, we

conclude this paper in Section VI with suggestions for future

work.

II. RELATED WORK

A. Log Analysis

In view of the importance of logs, research on this topic

attracts more and more researchers. The majority of these

researches concentrate on log analysis [15], which means

171

2018 25th Australasian Software Engineering Conference (ASWEC)

2377-5408/18/$31.00 ©2018 IEEE
DOI 10.1109/ASWEC.2018.00031

Authorized licensed use limited to: Nanjing University. Downloaded on December 11,2020 at 04:18:16 UTC from IEEE Xplore. Restrictions apply.

analysts utilize various techniques to analyze the existing

logs and retrieve useful information to support decisions, e.g.,

causal paths [16], event correlations [7], [17], component

dependency [18], resource usage [19], etc. Log analysis is also

widely used in anomaly detection [1]–[3], [5], monitoring [4],

cause diagnosis [6], [7], etc. In addition, tools supporting log

collection and analysis spring up in industrial environment,

such as ELK (Elasticsearch, Logstash, Kibana), Splunk, etc.

B. Researches on Logging Practice

Apparently, log with high quality is the prerequisite of

useful log analysis, which requires logging practice being

carried out properly. Nevertheless, there are quite few studies

focusing on logging practice.

Yuan et al. conducted a series of studies on logging practice.

For example, they confirmed the importance of logging prac-

tice with quantitative evidences [20]. In another study [16],

they proposed an approach to enhance the existing logging

statements to collect causally-related information so as to

reduce the burden when diagnosing failures. In [21], Yuan

et al. identified a number of patterns for logging practice

to put logging statements so as to balance “over logging”

and “insufficiently logging”. To make logging practice more

effective, they proposed to automate the placement of logging

statements by measuring the degree of software uncertainty

that can be removed by adding a logging statement [11]. The

approach is able to compute an optimal logging statement

placement, disambiguating the entire function call path with

acceptable performance slowdown. Chen et al. [22] performed

a replication study by Yuan et al. [20] and observed similar

results in 21 Java projects. Furthermore, they characterized

six anti-patterns in the logging statements by investigating the

developing history of three open source systems [13]. Fu et

al. studied logging practice of two large-scale online service

systems at Microsoft [10]. They provided six findings on the

categories of logged code snippets and factors for logging

decisions. Based on the first step they made, they proposed

a “learning to log” framework, aiming to learn the common

logging practice automatically.

Apart from studies on log enhancement and logging deci-

sion, Kabinna et al. examined changes to logging statements

in four open source applications in order to reduce the effort

for maintenance [23].

In spite of the aforementioned effort made by researchers,

logging has been still an arbitrary and subjective practice

in industry. There are no well-defined and broadly-accepted

logging guidelines for developers to refer to during software

development [10], [24].

C. Tools Guiding Logging Practice

Up to now, tools supporting logging practice are not rare,

e.g., log4j, SLF4J, etc. However, tools guiding logging practice

are still relatively scarce in industry.

Tools to guide where to log: Zhu et al. implemented an

automatic logging suggestion tool called LogAdvisor, which

is able to recommend developers where to log and potentially

reduce their logging effort. A similar work is conducted by

Zhao et al. [25], they proposed an automated tool Log20,

which determines a near optimal placement of logging state-

ments within a predefined performance overhead. Chen et

al. developed LCAnalyzer, which statically scans through the

source code and searches for anti-pattern instances mentioned

in [13] so as to avoid “bad smell” logging statements. Ding

et al. presented Log2, which is a cost-aware logging system

to optimally decide “whether to log”. This tool currently only

works for performance monitoring and diagnosis.

Tool to guide what to log: Yuan et al. presented a tool

named LogEnhancer [16] that modifies each logging statement

in a certain piece of code to ease failure diagnosis by collect-

ing additional causally-related information. In addition, they

developed Errlog [21], a tool that inserts proactive logging

statements to help developers capture more useful information

for postmortem failure diagnosis.

III. RESEARCH METHOD

A. Research Objectives

Although there are multiple purposes for log analysis, we

clearly define the scope of our study in the field of software

engineering. To be specific, logs are used to understand the

behavior of software systems so as to assist defect or issue

detection. In this sense, those studies using logs to understand

user habit/behavior so as to support recommendation are

excluded in our study.

In recent years, technological innovations such as cloud
computing, microservices and service mesh, etc. spring up,

making the services and systems more than ever distributed

and intricate, which greatly challenges the development and

operation teams. By adopting logging practice, dynamic be-

haviors of software systems and services could be captured

in logs, which provides valuable information for developers

and maintainers to understand what happened during the

runtime of software systems. Obviously, to satisfy this goal,

all nontrivial information are supposed to be recorded in

logs, which requires the logging practice to be carried out

properly. Unfortunately, there are very few relevant studies in

academia, which makes it impossible for us to understand the

implementation of the logging practice in real-world software

projects.

In light of this, we define the main research objective of

our study is: To explore the logging statements in real world
software projects in a quantified manner so as to understand
how logging practice is implemented in real-world software
projects.

To address this research objective, we defined three research

questions.

First, the density of logging statements depicts the overall

status of logging practice in projects. Although there is no

wildly accepted criterion on suitable density, if it is too

low, it is likely that the logging practice has not been well

implemented. To this end, our first research question is:

• RQ1: what is the density and distribution of logging

statements in these projects?

172

Authorized licensed use limited to: Nanjing University. Downloaded on December 11,2020 at 04:18:16 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Description of Java log levels

Log Level Description
Fatal This level designates very severe error events that will

presumably lead the application to abort.
Error / Severe This level designates error events that might still allow

the application to continue running.
Warn / Warning This level designates potentially harmful situations.
Info / Config This level designates informational messages that high-

light the progress of the application at coarse-grained
level.

Debug / Fine / Finer This level designates fine-grained informational events
that are most useful to debug an application.

Trace / Finest This level designates finer-grained informational events
than the “Debug”.

Second, log level represents what to log. Usually, there

are mainly six different log levels, as presented in Table I.

Note that the levels are different among different tools. For

example, in log4j, log4j2 and LOGBack, “Fatal”, “Error”,

“Warn”, “Info”, “Debug” and “Trace” are used to represent

various levels, meanwhile, in Java logger and SLF4J, “Se-

vere”, “Warning”, “Config”, “Fine”, “Finer” and “Finest” are

used. In order to unifying the standard for log levels, we

map the levels in these tools in light of the official document

of SLF4J1. Basically, if the log level varies greatly among

different projects or contributors within the same project, we

may conclude that logging practice has not been consistently

implemented. Therefore, we define the second research ques-

tion as follows:

• RQ2: what is the distribution of log level in these projects?

Third, the context of logging statements addresses the

locations where developers put logging statements, i.e. by

which types of code snippet it is surrounded. We use the types

defined in JavaParser, e.g., If statement, For statement, Catch
clause, etc.2 The basic idea is that if the distribution of logging

context varies greatly among projects or contributors within

the same project, it is more likely that that logging practice

has not been consistently implemented. To this end, the third

research question is:

• RQ3: what is the distribution of the context of logging

statements?

B. Metrics and Analysis

To answer the three research questions, we defined several

metrics.

1) The density of logging statements: This metric could be

further divided into two sub-metrics: 1) Da: the density of

logging statements from the project perspective, 2) Dw: the

density of logging statements from the contributor perspective.

As the term implies, the density of logging statements counts

the number of logging statements per KLOC. Apparently, the

density of logging statements in a certain project could be

calculated via the following equation.

Density =
#Logging statement

LOC of the source code

1https://www.slf4j.org/apidocs/org/slf4j/bridge/SLF4JBridgeHandler.html
2please refer to http://www.javadoc.io/doc/com.github.javaparser/

javaparser-core/3.6.5 for more details.

Clone

CLOC
Lines of codeLines of code

ToolTool

Project typeProject type

Git blame
files Extract Content &

Contributor
Content &
Contributor

ContextContext LevelLevel

Number of
lines

Number of
lines

Logging statement

Content &
Contributor

Context Level

Number of
lines

Logging statement
Density of logging

statements

%%
Density of logging

statements

%%%%%

Distribution of
log level

Distribution of
log level

Distribution of
log context

Distribution of
log context

Fig. 1: Procedure of data preparation

If we group the logging statements and source code by

distinct contributors, we can calculate the density of logging

statements from the contributor perspective using the same

equation similarly.
2) The log level of logging statements: This metric consists

of two sub-metrics: 1) La: the log level of logging statements

from the project perspective, 2) Lw: the log level of logging

statements from the contributor perspective.

The metric of the level of logging statements is then calcu-

lated as the percentage of the number of logging statements

with a certain logging level (e.g., Fatal, Error, etc.) to the total

number of logging statements.
3) The context of logging statements: This metric could

also be further elaborated in two sub-metrics: 1) Ca: the

context of logging statements from the project perspective,

2) Cw: the context of logging statements from the contributor

perspective.

Therefore, the metric of the context of logging statements
is calculated as the percentage of logging statements with a

certain context type both in terms of project and contributor.

C. Data Preparation

We focus our investigation on open source projects, since

the source code of commercial software systems is inac-

cessible. The whole procedure of data preparation is shown

in Figure 1. In a nutshell, we first retrieve the source code

of each project from GitHub. Then we extract the necessary

data (i.e., logging statements) from the source code. Finally,

we apply descriptive statistics to analyze the data and form

findings.
1) Data Source: We use one of the largest online repos-

itories (i.e., GitHub) as the source from which we retrieved

data for investigation. GitHub utilizes tool Git for version

control and source code management, which provides plenty

of commands for us to retrieve related information for our

investigation. Moreover, GitHub provides abundant resource

for us to investigate the status that contributors carrying out

logging practice. For example, a significant feature that Git

provides is the git blame, which allows us to differentiate

the owner of each line of code. Open source projects on

GitHub are ranked by stars, which represents the number of

people who like the project. To some extent, the number of

stars one project received reflects the degree of population.

173

Authorized licensed use limited to: Nanjing University. Downloaded on December 11,2020 at 04:18:16 UTC from IEEE Xplore. Restrictions apply.

TABLE II: Projects on GitHub after screening

ID Project Rank Type Description
P1 ReactiveX/RxJava 2 Library RxJava - Reactive Extensions for the JVM - a library for composing

asynchronous and event-based programs using observable sequences
for the Java VM.

P2 elastic/elasticsearch 3 Product Open Source, Distributed, RESTful Search Engine
P3 spring-projects/spring-boot 6 Framework Spring Boot
P4 google/guava 7 Library Google core libraries for Java
P5 spring-projects/spring-framework 12 Framework Spring Framework
P6 apache/incubator-dubbo 15 Framework Apache Dubbo (incubating) is a high-performance, java based, open

source RPC framework.
P7 skylot/jadx 23 Decompiler Dex to Java decompiler
P8 libgdx/libgdx 25 Framework Desktop/Android/HTML5/iOS Java game development framework
P9 netty/netty 26 Framework Netty project - an event-driven asynchronous network application

framework
P10 Netflix/Hystrix 27 Library Hystrix is a latency and fault tolerance library designed to isolate points

of access to remote systems, services and 3rd party libraries, stop
cascading failure and enable resilience in complex distributed systems
where failure is inevitable.

P11 alibaba/fastjson 28 Library A fast JSON parser/generator for Java
P12 alibaba/druid 36 Library Druid is one of the best database connection pools written in Java.

Druid provides powerful monitoring functionalities and more.
P13 SeleniumHQ/selenium 39 Framework A browser automation framework and ecosystem.
P14 shuzheng/zheng 44 Framework A distributed system architecture for agile development based on

Spring+SpringMVC+Mybatis.
P15 nathanmarz/storm 59 Framework Distributed and fault-tolerant realtime computation: stream processing,

continuous computation, distributed RPC, and more
P16 bazelbuild/bazel 62 Product a fast, scalable, multi-language and extensible build system
P17 EnterpriseQualityCoding/FizzBuzzEnterpriseEdition 63 Game FizzBuzz Enterprise Edition is a no-nonsense implementation of

FizzBuzz made by serious businessmen for serious business purposes.
P18 deeplearning4j/deeplearning4j 64 Library Deep Learning for Java, Scala & Clojure on Hadoop & Spark With

GPUs - From Skymind
P19 openzipkin/zipkin 68 Product Zipkin is a distributed tracing system
P20 apache/kafka 69 Product Mirror of Apache Kafka
P21 eclipse/vert.x 73 Framework Vert.x is a tool-kit for building reactive applications on the JVM
P22 LMAX-Exchange/disruptor 78 Library High Performance Inter-Thread Messaging Library
P23 monkeyWie/proxyee-down 81 Product Http download tool based on Http proxy
P24 prestodb/presto 82 Product Distributed SQL query engine for big data
P25 mybatis/mybatis-3 85 Framework MyBatis SQL mapper framework for Java
P26 perwendel/spark 87 Product A simple expressive web framework for java. News: Spark now has a

kotlin DSL
P27 clojure/clojure 97 Language The Clojure programming language
P28 apache/hadoop 100 Product Mirror of Apache Hadoop

Since Java is one of the most popular programming lan-

guages for back-end development, we select top 100 Java

projects based on stars for our investigation. Through the

following URL, we can obtain the list of projects sorted by

stars, and the top 100 projects (up to May, 2018) are the target

source of our investigation in the end.

https://github.com/search?l=Java&o=desc&q=stars%3A%3E1&s=
stars&type=Repositories&utf8=%E2%9C%93

To be consistent and easy to compare, we only consider

native Java language. Therefore, projects using Groovy, Scala,

and Clojure are excluded. Moreover, android projects are also

excluded in our research, since developers may minimize

the use of log statements to fit the application environment,

i.e., mobile phones. Besides, projects without source code

and for tutorial purpose are also excluded. As the result, we

eventually retain 28 projects. Table II lists the 28 projects with

relevant information. We downloaded all projects into our local

environment for further processing via shell command git
clone. And in this paper, we use character “P” followed by

numbers to refer to each project in the following sections.
2) Data Extraction: We aim to retrieve the following

information from each project.

• content of each logging statement

• corresponding contributor of each logging statement

• log level of each log statement

• context of each log statement

• lines of code (LOC) of each project

• type of each project

To meet this purpose, we developed a tool, Java Log

Retriever (JLR)3 to extract these information. Generally, the

data extraction procedure consists of three main aspects, i.e.

1) Generating intermediate information; 2) Data retrieval from

source code; 3) Meta-data retrieval from projects, as shown

in Figure 1. In the following paragraphs, we will illustrate

each step in detail.

a) Step 1: Generating intermediate information: Our

first step is to generate a map from contributors to code, as

one of our research intentions is to understand the different

logging preference between distinct contributors. Based on this

map, each line of code can be attributed to its corresponding

contributor. This step is the cornerstone of further extraction

and analysis, providing us an approach to know how many

lines of logging statements a certain contributor wrote and

what kind of logging statements he or she put in code, and

so on. This step utilizes several shell and Git commands to

finish the operation, which are sequenced by Linux pipeline.

The command for Git blame file generation is as follows:

3We had it open sourced on Github web through https://tinyurl.com/
ybucf6g9

174

Authorized licensed use limited to: Nanjing University. Downloaded on December 11,2020 at 04:18:16 UTC from IEEE Xplore. Restrictions apply.

git ls-files | grep -E "\.java$" | sed ’s/\(.*\.\)java$/git
↪→ blame \1java > \1blame/’ | sh

Basically, the command consists of four steps. In the first

place, we utilize Git command - git ls-files to list all

files in Git index and working tree. And then Java files are

preserved while other types of files are omitted, since we

only investigate Java logging statements. In the next part, we

use git blame to get the information of each line, e.g.,

author, time, path. sed command is used to transform Java file

name into git blame command which outputs the final files

with “.blame” extension. In the end, the previous command

generated by sed command is executed via sh command.

We run this command in the root path of each project

and each Git blame file is generated under the same path of

its corresponding Java file. Finally, the example results after

retrieving are like the following.

043881148 multiton/src/main/java/com/iluwatar/multiton/App.
java (daniel-bryla 2016-10-23 19:59:03 +0200 50) LOGGER.info
("MURAZOR={}", Nazgul.getInstance(NazgulName.MURAZOR));

The first part of this line is 40-byte SHA-1 of the commit

the line is attributed to. The next part is the path of the file

the logging statement belongs to. In the parentheses, the author

name, timestamps and the line number are given. The last part

is original statement.

……
574d1b35b35e AbstractSimpleTransportTestCase.java (Author1 2015-12-23 14:46:54 +0100 291) } catch (IOException e) {
f5e6db4090d6 AbstractSimpleTransportTestCase.java (Author2 2016-03-15 15:04:34 +0100 292) logger.error("Unexpected failure", e);
f5e6db4090d6 AbstractSimpleTransportTestCase.java (Author2 2016-03-15 15:04:34 +0100 293) fai l(e.getMessage());
574d1b35b35e AbstractSimpleTransportTestCase.java (Author1 2015-12-23 14:46:54 +0100 294) }
……

……
292: Author2, error, CatchClause, logger.error("Unexpected failure", e);
……

……
291: Author1 } catch (IOException e) {
292: Author2 logger.error("Unexpected failure", e);
293: Author2 fail(e.getMessage());
294: Author1 }
……

……
} catch (IOException e) {
 logger.error("Unexpected failure", e);
 fail(e.getMessage());
}
……

Catch Clause

logger.error("Unex
pected failure", e);

fail(e.getMessage()
);

…… ……

Catch Clause

logger.error("Unex
pected failure", e);

fail(e.getMessage()
);

…… ……Regular Expressions

Source code

Identify logging
statements & Log level

Line numbers & Contributors

Context

Logging statements & Log level

AST

Fig. 2: Process of data retrival

b) Step2: Data retrieval from source code: It is not

likely that the context of logging statements could be extracted

directly from source code. Prior to retrieve the context of

logging statements, we need to know the code structure, e.g.,

in which code snippet each logging statement is located. To

achieve this goal, we utilize Abstract Syntax Tree (AST) to

represent the code structure of Java file (i.e. file with “.java”

extension).

The aforementioned process is the principle of how JLR

works in general. For more detail, as shown in Figure 2, JLR

first reads the Git blame files generated in previous procedure.

Next, it records the line number, corresponding author and

content of each statement. And then, given all statements, it

parses them into an AST with the aid of JavaParser4. The

next step is to identify whether the expression statement is a

4http://javaparser.org/

logging statement or not, and we use the following regular

expressions to identify logging statements.

(?i)log[ˆ.]*\.[ˆ.]*(fatal|error|warn|info|debug|trace)[ˆ.
↪→]*

(?i)log[ˆ.]*\.log\((severe|warn|info|config|fine|finer|
↪→ finest)

(?i)log[ˆ.]*\.log\(level\.(severe|warn|info|config|fine|
↪→ finer|finest)

If a logging statement node is identified, JLR first retrieves

its parent node and then get the type of the parent node.

Meanwhile, log level of logging statement is extracted and

recorded, as well as its content.

Finally, JLR outputs the data generated from each of Git

blame files and merges them into one final report. The format

of the report is described below.

426: cpovirk, SEVERE, CatchClause, log.log(Level.SEVERE, "
RuntimeException while executing runnable " + runnable + "
with executor " + executor, e);

The part before the colon is the line number, followed by

its contributor, level and context. The rest part is the original

logging statement.

c) Step3: Meta-data retrieval from project: In this

step, we need to retrieve meta-data information from each

project, i.e. lines of Java code and the type or category of

project. As for retrieving lines of Java code, we count the lines

of code in each project, utilizing an open source tool named

CLOC5. The purpose of logging may vary among different

types of projects. In this sense, we manually identify the types

of projects according to the description on their homepage. A

noteworthy point is that the project types only provide a rough

dimension for understanding logging practices. In other words,

the same type of projects in our study does not necessarily

adopt the same logging strategy.

IV. RESULTS

Based on the data we extracted from the 28 projects, we

perform descriptive statistic to show the status of logging

practice in these projects.

A. Status and Difference Across Projects

We find the logging behavior and preferences of contributors

in various projects are different in terms of density and log
level. However, the context of logging statements converges.

1) Da: Density and Distribution of Logging Statements
Across Projects: Among the projects listed in II, most of the

projects have logging statements except three projects, i.e. P1,

P17 and P27. We removed these three projects for the finial

analysis.

In general, we defined two major types of projects, i.e.

libraries & frameworks and products, respectively. The former

type of projects are primarily used at development stage to

be called by other software systems. On the contrary, the

latter type of projects could be used as a standalone systems.

Considering that different projects may have distinct purposes

for logging, we perform statistic analysis these two types of

projects separately. Figure 3 and Figure 4 depict the details of

5https://github.com/AlDanial/cloc

175

Authorized licensed use limited to: Nanjing University. Downloaded on December 11,2020 at 04:18:16 UTC from IEEE Xplore. Restrictions apply.

Fig. 3: Density of logging statements in libraries & frame-

works

Fig. 4: Density of logging statements in products

the different two categories , including the number of logging

statements, lines of code and density of logging statements.

The broken line represents the density of logging statements

of distinct projects. And two bars with different colors repre-

sent the number of logging statements (red bar) and lines of

code (indigo bar) respectively. We should notice that the unit

of lines of code in Figure 3 and Figure 4 is KLOC, and this

metric includes only physical code without comments.

Apparently, in both types of projects using logging tech-

nique, the density of logging statements turns out to be quite

different. The density of logging statements in some open

source projects is at a very low level, e.g., P4, P8, P11, P13
and P16. Besides, the density of logging statements in most

open source projects is distinctly lower than that in commercial

software projects [12] (roughly one logging statement per

58 LOC), indicating a relatively insufficient logging in open

source projects. We believe the different culture between open

source projects and commercial projects may have led to

this phenomenon. In commercial software projects, the use of

logging statements is often regulated through relatively stricter

coding conventions and code reviews. In contrast, in open

source projects, the implementation of similar conventions is

relatively relaxed.

Moreover, it is obvious that the density of logging state-

ments varies among different projects, ranging from 0.2� to

100�. To be more intuitive, in some projects, there is only one

logging statement in every 50,000 lines of code while in other

projects there is one logging statements in every 100 lines

Fig. 5: Distribution of log level in libraries & frameworks

Fig. 6: Distribution of log level in products

of code. This tremendous difference may imply inconformity

among the contributors in different projects when applying

logging practice.

Finding 1: The density of logging statements is generally
low and varies tremendously across different projects.

2) La: Distribution of Log Level: Given the logging state-

ments extracted from each project, we analyze each logging

statement to identify what the log level is. We depict the

distribution of log level in libraries & frameworks as well as in

products, as shown in Figure 5 and Figure 6 respectively. The

log levels include “Fatal”, “Error”, “Warn”, “Info”, “Debug”,

“Trace”, and we map “Severe”, “Warning”, “Config”, “Fine”,

“Finer” and “Finest” into its corresponding level, according

to Table I.

Overall, the distribution of different log levels varies greatly

among the two types of open source projects. In the type

of libraries & frameworks projects, “Debug” and “Info”

are the most two log levels, occupying 30.19% and 26.16%,

respectively. In the type of products project, the first two

are still “Debug” and “Info”, but the positions are reversed,

i.e., log level of “Info”, accounting for 49.95% and “Debug”

20.57%. Besides, in the two types of projects, four types of

log level (i.e. “Debug”, “Info”, “Warn”, and “Error”) account

for over 90% of the total log levels, indicating these four types

of log levels are most preferred by open source developers. It

should be noted that this does not mean that the above four

log levels generate the most logs during runtime. For example,

a manual checking reveals that a lot of logging statements on

“Debug” level are embraced by “if” statement, which could

be turn off in the production environment.

To further explore the log levels, we pick out the projects

176

Authorized licensed use limited to: Nanjing University. Downloaded on December 11,2020 at 04:18:16 UTC from IEEE Xplore. Restrictions apply.

Fig. 7: Difference on log level

Fig. 8: Distribution of log context in libraries & frameworks

which have over one thousand lines of logging statements and

depict the distribution of log level in one radar chart, as shown

in Figure 7. Note that P2, P20 and P28 share the same project

type. We could also observe major differences with respect to

the log levels applied in these projects.

Finding 2: The distribution of major log levels are
different among various projects.

3) Ca: Distribution of Log Context: The log context in

two types of projects are shown in Figure 8 and Figure 9.

To simplify, we merge several similar context description

into one. Specifically, in Figure 8 and Figure 9, “Switch”

is a combination of “Switch Statement” and “Switch Entry

Statement”; “Loop” is a combination of “Foreach Statement”,

Fig. 9: Distribution of log context in products

“For Statement”, “While Statement” and “Do Statement”. It

is obvious that developers prefer to add a logging statement

in a “If Statement” in both types of projects. “Catch Clause”

usually implies that certain exceptions have occurred during

runtime, which attracts developers to put log statements to un-

derstand what happened. Meanwhile, it may be a performance

consideration that there are relatively few (less than 5%) log

statements in “Loop” structure.

Finding 3: Developers tend to add log statements to code
snippets that have branches, e.g., "If Statement" and "Try-
Catch" clause.

B. Status and Difference Within One Project

Preferences to carry out logging practice of various contrib-

utors seem to be different across different projects. Since this

phenomenon may be due to differences among projects, we

also investigated the implementation of logging practices in

the same project.

Fig. 10: Logging statements from different contributors within

the same project

1) Dw: Density of Logging Statements: Even within the

same project, logging preferences of distinct contributors are

different as well. We choose P28 as an example 6. The results

are presented in Figure 10. We treat contributors anonymously

to avoid revealing privacy by denoting them with character

“C” followed with numbers, which denotes the rank according

to the number of logging statements in their source code.

For example, C1 wrote the most log statements in his code.

Besides, contributors are sorted by the size (measured by

LOC) of the source code they contributed to this project

in descending order. As Figure 10 shows, we listed top 20

contributors in this figure. The red bar represents the number

of logging statements while the indigo bar represents the lines

of code they contributed.

It can be observed that different contributors do not have the

similar behavior to conduct logging practice. Some of them

log more frequently, for instance, as the third contributor,

C3 put nearly one logging statement in every 81 lines of

code. Meanwhile, the second contributor put one logging

statement nearly in every 218 lines of code. In general, we

could observe relatively large difference with respect to the

6please refer to https://tinyurl.com/y8hjh7sn for complete results.

177

Authorized licensed use limited to: Nanjing University. Downloaded on December 11,2020 at 04:18:16 UTC from IEEE Xplore. Restrictions apply.

Fig. 11: Distribution of log level in P28

Fig. 12: Distribution of log level in P3

density of logging statements for the top 20 contributors in

P28, ranging from 2.77� to 12.35�.

Finding 4: The density of logging statements from distinct
contributors is different among various contributors within
the same project.

2) Lw: Distribution of Log Level: Take P28 as an example,

we analyze the distribution of the log level from the top 10

contributors. As shown in Figure 11, the log levels they applied

are different from each other. For example, C11 prefer to

use “Trace” more than others. Similar phenomenon could be

observed in P3 (Figure 12).

In general, major differences can be observed among the

top 10 contributors in terms of the log level the applied in

their source code. Similar phenomenon can also be found in

other projects 7.

Finding 5: Even within a project, the log level of distinct
contributors is different in most cases.

3) Cw: Distribution of Log Context: The distribution of log

context between distinct contributors seems to be similar, as

shown in Figure 13. Obviously, contributors prone to place

7see https://tinyurl.com/y8hjh7sn

Fig. 13: Distribution of log context in P28

logging statements inside “If” blocks, more generally, inside

potentially new branches.

Finding 6: Within a project, the distribution of log context
seems to be similar among different contributors.

V. DISCUSSIONS

By extracting and analyzing the logging statements in most

popular projects, we identified major difference on the density
and log level of logging statements, as well as the convergence

of logging context, which to a fair degree imply that logging

practice has not been well carried out in these open source

projects.

A. Implications

Given the aforementioned results, there are several impor-

tant implications.

Ad-hoc logging: It seems that the logging practice among

distinct developers differ from each other to a very large

extent. Not only the density of logging statements, but also

the contents (what to log?) of logging statements vary among

different developers. With this ad-hoc manner to carry out the

logging practice, we have to doubt whether logs can provide

a reliable source of information for log analysis to establish a

correct understanding of the runtime behavior of the program.

Balance and trade-off of logging practice: Given the

current status on logging practice in open source projects, it

might be too early to discussion the “balance” and “trade-

off” when conducting logging practice. Although this is a

very hot topic and big challenge in research towards better

logging practice [10], [12], [26], [27], the huge difference on

logging density and levels,together with the very few contexts
suggest that before everything, suitable mechanisms to ensure

the logging practice being well conducted should be devised.

Research on Log analysis: Similarly, as another hot

research topic, log analysis attracts many attention among

software engineering practitioners [3], [15], [19]. Nevertheless,

as revealed in this study, current logging practice in open

source projects might not provide quality logs to support log

analysis well. Due to insufficient or even misleading logs

generated by current logging practice, it is not likely to mine

valuable information from them. In this sense, we suggest

that relevant researchers should pay more attention to logging

178

Authorized licensed use limited to: Nanjing University. Downloaded on December 11,2020 at 04:18:16 UTC from IEEE Xplore. Restrictions apply.

practice and improve the quality of logs before exploring more

sophisticated approaches to perform log analysis.

B. Possible Reasons

We discuss several possible reasons for the current status

on logging practice in open source projects in this subsection.

Lacking awareness to perform logging practice: It is not

rare that some contributors did very little (even none) logging

practice in these projects. Note that even if the log mechanism

is turned off in the production environment, our tools can still

extract the corresponding log statement, unless the logging

statements have been removed or not written at all. In this

sense, lacking the awareness to perform logging practice seems

to be one of the reasons for this phenomenon. Besides, as

studies [13], [23] pointed out, along with system evolution,

logging practice is easily being neglected, which also requires

strengthened awareness to perform logging practice.

Lacking practical guidelines: It seems that there lacks of

practical guidelines for software developers to perform logging

practice. As the result, personal experience and preference

plays an important role in logging practice in these projects.

This is reflected in the difference in the density, levels and

context of logging statements.

Lacking suitable tools: Another reason for this phe-

nomenon might be lacking of tools to guide logging practice

and check logging statements afterwards. Without suitable

tools, software developers have to rely on manual checking

according to personal experience, which is not only time-

consuming but also error-prone.

C. Next Step

It seems that practical and context-specific guidelines for

logging practice is in urgent need to help developers conduct-

ing this practice. There are several existing guidelines such

as [28], [29]. However, most of these guidelines work for

general purpose, which may not be suitable for a specific

project. Besides, how to implement these guidelines is also a

big challenge, which lead to another much-needed work, i.e.,

supporting tools to guide the logging practice. Several studies

proposed tools to help developers put logging statements

(cf. subsection II-B), however, tools to perform checking for

logging statements according to predefined guidelines are also

needed to implement the logging practice properly.

D. Threats to Validity
a) Java-based projects: Our study is performed on Java-

based open source projects and we did not investigate the

projects based on other languages. Which may to a certain

degree impact our conclusion. Nevertheless, Java is one of

the most adopted programming languages in the open source

community. In this sense, the result in this study could reflect

the status of logging practice in open source projects to a fair

degree.
b) Various application areas of projects: The projects

we investigated are all from GitHub, including some famous

projects from big organizations and some from individuals.

From the results of the study, the obvious differences in log

density and levels and the convergence of the context of

logging statements are a common phenomenon. In this sense,

our findings and conclusions, to a fair degree, still valid.
c) Data extraction: The procedure we used to extract the

source code may not be able to capture all logging statements.

At the current stage, JLR only supports logging statements

generated by Log4j, Log4j2, SLF4J, Java logger and LOG-
Back. Therefore, there may be some logging statements we

omitted more or less. However, through manually checking,

all the logging statements in the pilot extraction have been

detected by JLR, which to a fair degree mitigate the impacts

derived by missing logging statements.
d) Metrics to measure the status of logging practice: Our

work implied that the logs generated by the existing logging

practice may not be enough for us to reliably understand the

program behavior. However, there is a conceptual gap here,

i.e., the metrics we use can only reveal the differences in

density and level among projects and contributors as well.

However, this does not mean that the capture of program

behavior by the logs generated by current logging practice

must be inadequate and inaccurate. Nevertheless, given the

nontrivial difference we identified on logging practices as well

as the very few types of places (i.e., the context of logging

statements), it is hard to establish the confidence that the

runtime behavior could be properly captured.

VI. CONCLUSION

With the ever-increasing scale and complexity of soft-

ware systems and services, to understand how these software

systems and services operate is more and more important

for developers and maintainers. As the footprint of running

software systems and services, logs are one of the most

important sources for software developers and maintainers

to understand the runtime behaviors and identify issues. To

satisfy this purpose, logs are supposed to contain sufficient

information regarding the runtime behaviors, which requires

the logging practice to be properly conducted. However, very

few studies have been conducted to understand how well the

logging practice has been carried out. In this sense, we carried

out an empirical study to explore the logging practice in top

open source projects on GitHub. The contribution of this study

may be highlighted as follows:

First, instead of taking for granted that logs provides enough

information to understand runtime behavior, we focus on the

quality of logging practice which produces the logs, which

seems to be neglected by the academic community currently.

We noticed a blog post and the investigation behind [14], [30]

also questioned the quality of the log, yet only very little

information provided by this work which limits our capability

to understand how logging practice has been implemented in

real-world projects.

Second, through our empirical investigation, we revealed

major difference in terms of density and log levels of logging

statements as well as the convergence of logging statements

over very few contexts both across projects and within one

project, which implies that this practice has not been well

conducted, leading to questionable capability to capture the

179

Authorized licensed use limited to: Nanjing University. Downloaded on December 11,2020 at 04:18:16 UTC from IEEE Xplore. Restrictions apply.

runtime behavior of software systems and services. A more

profound implication for this fact is that it may impair the

trustworthiness of the results came from current log analysis.

Last but not least, based on the results and related discus-

sion, we point out that the main problem at present is to devise

mechanisms to guarantee the quality of logs through properly

logging practice. For example, to establish suitable guidelines

and develop workable checking tools to help developers to do

better logging practice.

There are still several limitations for this study at this

preliminary stage, therefore, we suggest two major topics for

future work. 1) To extend investigation scope to include more

software projects (perhaps including commercial projects) so

as to portray the adoption status of logging practice more

comprehensively. 2) We did not conduct survey to explore

how developers conduct logging practice in this study. There-

fore, one promising future work might be a survey to better

understand how the logging practice is conducted and how to

improve this practice.

ACKNOWLEDGMENT

This work is supported by the National Natural Science

Foundation of China (Grant No.61572251).

REFERENCES

[1] M. K. Aguilera, J. C. Mogul, J. L. Wiener, P. Reynolds, and A. Muthi-
tacharoen, “Performance debugging for distributed systems of black
boxes,” in Proceedings of the Nineteenth ACM Symposium on Operating
Systems Principles (SOSP ’03). New York, NY, USA: ACM, 19 October
2003, pp. 74–89.

[2] I. Cohen, S. Zhang, M. Goldszmidt, J. Symons, T. Kelly, and A. Fox,
“Capturing, indexing, clustering, and retrieving system history,” in
Proceedings of the Twentieth ACM Symposium on Operating Systems
Principles (SOSP ’05). New York, NY, USA: ACM, 23 October 2005,
pp. 105–118.

[3] Q. Fu, J.-G. Lou, Y. Wang, and J. Li, “Execution anomaly detection in
distributed systems through unstructured log analysis,” in 2009 Ninth
IEEE International Conference on Data Mining (ICDM ’09). IEEE, 6
December 2009, pp. 149–158.

[4] M. Montanari, J. H. Huh, D. Dagit, R. B. Bobba, and R. H. Camp-
bell, “Evidence of log integrity in policy-based security monitoring,”
in IEEE/IFIP International Conference on Dependable Systems and
Networks Workshops (DSN ’12). IEEE, 25 June 2012, pp. 1–6.

[5] W. Xu, L. Huang, A. Fox, D. Patterson, and M. I. Jordan, “Detecting
large-scale system problems by mining console logs,” in Proceedings of
the ACM SIGOPS 22Nd Symposium on Operating Systems Principles
(SOSP ’09). New York, NY, USA: ACM, 11 October 2009, pp. 117–
132.

[6] L. Mariani and F. Pastore, “Automated identification of failure causes
in system logs,” in 2008 19th International Symposium on Software
Reliability Engineering (ISSRE ’08). IEEE, 10 November 2008, pp.
117–126.

[7] K. Nagaraj, C. Killian, and J. Neville, “Structured comparative analysis
of systems logs to diagnose performance problems,” in Proceedings
of the 9th USENIX Conference on Networked Systems Design and
Implementation (NSDI ’12). Berkeley, CA, USA: USENIX Association,
25 April 2012, pp. 26–26.

[8] J. Hertvik and S. Paskin. (2017) What is AIOps? AIOps explained.
[Online]. Available: https://www.bmc.com/blogs/what-is-aiops/

[9] B. W. Kernighan and R. Pike, The practice of programming. Addison-
Wesley Professional, 1999.

[10] Q. Fu, J. Zhu, W. Hu, J.-G. Lou, R. Ding, Q. Lin, D. Zhang, and T. Xie,
“Where do developers log? an empirical study on logging practices in
industry,” in Companion Proceedings of the 36th International Confer-
ence on Software Engineering (ICSE Companion 2014). New York,
NY, USA: ACM, 7 June 2014, pp. 24–33.

[11] X. Zhao, K. Rodrigues, Y. Luo, M. Stumm, D. Yuan, and Y. Zhou, “The
game of twenty questions: Do you know where to log?” in Proceedings
of the 16th Workshop on Hot Topics in Operating Systems (HotOS ’17).
New York, NY, USA: ACM, 2017, pp. 125–131.

[12] J. Zhu, P. He, Q. Fu, H. Zhang, M. R. Lyu, and D. Zhang, “Learning
to log: Helping developers make informed logging decisions,” in 2015
IEEE/ACM 37th IEEE International Conference on Software Engineer-
ing (ICSE ’15). IEEE, 16 May 2015, pp. 415–425.

[13] B. Chen and Z. M. J. Jiang, “Characterizing and detecting Anti-
patterns in the logging code,” in Proceedings of the 39th International
Conference on Software Engineering (ICSE ’17). Piscataway, NJ, USA:
IEEE Press, 2017, pp. 71–81.

[14] H. Idan. (2017) GitHub research: Over 50% of java logging statements
are written wrong. [Online]. Available: https://blog.takipi.com/
github-research-over-50-of-java-logging-statements-are-written-wrong/

[15] A. Oliner, A. Ganapathi, and W. Xu, “Advances and challenges in
log analysis,” Communications of the ACM, vol. 55, no. 2, pp. 55–61,
February 2012.

[16] D. Yuan, J. Zheng, S. Park, Y. Zhou, and S. Savage, “Improving software
diagnosability via log enhancement,” ACM Transactions on Computer
Systems (TOCS), vol. 30, no. 1, pp. 4:1–4:28, 1 February 2012.

[17] X. Fu, R. Ren, J. Zhan, W. Zhou, Z. Jia, and G. Lu, “LogMaster: Mining
event correlations in logs of Large-Scale cluster systems,” in 2012 IEEE
31st Symposium on Reliable Distributed Systems. IEEE, 8 October
2012, pp. 71–80.

[18] A. J. Oliner and A. Aiken, “Online detection of multi-component inter-
actions in production systems,” in 2011 IEEE/IFIP 41st International
Conference on Dependable Systems Networks (DSN). IEEE, 18 July
2011, pp. 49–60.

[19] B. Sharma, V. Chudnovsky, J. L. Hellerstein, R. Rifaat, and C. R.
Das, “Modeling and synthesizing task placement constraints in Google
compute clusters,” in Proceedings of the 2Nd ACM Symposium on Cloud
Computing (SOCC ’11). New York, NY, USA: ACM, 26 October 2011,
pp. 3:1–3:14.

[20] D. Yuan, S. Park, and Y. Zhou, “Characterizing logging practices
in Open-Source software,” in Proceedings of the 34th International
Conference on Software Engineering (ICSE ’12). Piscataway, NJ, USA:
IEEE Press, 2 June 2012, pp. 102–112.

[21] D. Yuan, S. Park, P. Huang, Y. Liu, M. M.-J. Lee, X. Tang, Y. Zhou, and
S. Savage, “Be conservative: Enhancing failure diagnosis with proactive
logging,” in Proceedings of the 10th USENIX Symposium on Operating
Systems Design and Implementation (OSDI ’12), 8 October 2012, pp.
293–306.

[22] B. Chen and Z. M. J. Jiang, “Characterizing logging practices in Java-
based open source software projects – a replication study in Apache
Software Foundation,” Empirical Software Engineering, vol. 22, no. 1,
pp. 330–374, 1 February 2017.

[23] S. Kabinna, W. Shang, C. P. Bezemer, and A. E. Hassan, “Examining the
stability of logging statements,” in 2016 IEEE 23rd International Con-
ference on Software Analysis, Evolution, and Reengineering (SANER).
IEEE, March 2016, pp. 326–337.

[24] A. Pecchia, M. Cinque, G. Carrozza, and D. Cotroneo, “Industry prac-
tices and event logging: Assessment of a critical software development
process,” in 2015 IEEE/ACM 37th IEEE International Conference on
Software Engineering (ICSE ’15’). IEEE, 16 May 2015, pp. 169–178.

[25] X. Zhao, K. Rodrigues, Y. Luo, M. Stumm, D. Yuan, and Y. Zhou,
“Log20: Fully automated optimal placement of log printing statements
under specified overhead threshold,” in Proceedings of the 26th Sym-
posium on Operating Systems Principles (SOSP ’17). New York, NY,
USA: ACM, 2017, pp. 565–581.

[26] F. Baccanico, G. Carrozza, M. Cinque, D. Cotroneo, A. Pecchia, and
A. Savignano, “Event logging in an industrial development process:
Practices and reengineering challenges,” in 2014 IEEE International
Symposium on Software Reliability Engineering Workshops (ISSREW
’14). IEEE, 3 November 2014, pp. 10–13.

[27] H. Li, W. Shang, and A. E. Hassan, “Which log level should developers
choose for a new logging statement?” Empirical Software Engineering,
vol. 22, no. 4, pp. 1–33, 14 October 2016.

[28] Stephan. (2008) 7 good rules to log exceptions. [Online]. Available:
http://codemonkeyism.com/7-good-rules-to-log-exceptions/

[29] C. Eberhardt. (2014) The art of logging. [Online]. Available:
https://www.codeproject.com/Articles/42354/The-Art

[30] A. Zhitnitsky. (2016) 779,236 Java logging statements,
1,313 GitHub repositories: ERROR, WARN or
FATAL? [Online]. Available: https://blog.takipi.com/

779236-java-logging-statements-1313-github-repositories-error-warn-or-fatal/

180

Authorized licensed use limited to: Nanjing University. Downloaded on December 11,2020 at 04:18:16 UTC from IEEE Xplore. Restrictions apply.

