
JLLAR: A Logging Recommendation Plug-in Tool for Java
Jing Zhu∗

Software Institute, Nanjing University
Nanjing, Jiangsu, China

151250211@smail.nju.edu.cn

Guoping Rong
Software Institute, Nanjing University

Nanjing, Jiangsu, China
ronggp@nju.edu.cn

Guocheng Huang
Software Institute, Nanjing University

Nanjing, Jiangsu, China
orihgc02221@gmail.com

Shenghui Gu
Software Institute, Nanjing University

Nanjing, Jiangsu, China
dz1732002@smail.nju.edu.cn

He Zhang
Software Institute, Nanjing University

Nanjing, Jiangsu, China
hezhang@nju.edu.cn

Dong Shao
Software Institute, Nanjing University

Nanjing, Jiangsu, China
dongshao@nju.edu.cn

ABSTRACT
Logs are the execution results of logging statements in software
systems after being triggered by various events, which is able to
capture the dynamic behavior of software systems during runtime
and provide important information for software analysis, e.g., is-
sue tracking, performance monitoring, etc. Obviously, to meet this
purpose, the quality of the logs is critical, which requires appropri-
ately placement of logging statements. Existing research on this
topic reveals that where to log? and what to log? are two most con-
cerns when conducting logging practice in software development,
which mainly relies on developers’ personal skills, expertise and
preference, rendering several problems impacting the quality of
the logs inevitably. One of the reasons leading to this phenomenon
might be that several recognized best practices(strategies as well)
are easily neglected by software developers. Especially in those
software projects with relatively large number of participants. To
address this issue, we designed and implemented a plug-in tool (i.e.,
JLLAR) based on the Intellij IDEA, which applied machine learning
technology to identify and create a set of rules reflecting commonly
recognized logging practices. Based on this rule set, JLLAR can
be used to scan existing source code to identify issues regarding
the placement of logging statements. Moreover, JLLAR also pro-
vides automatic code completion and semi code completion (i.e., to
provide recommendations) regarding logging practice to support
software developers during coding.

KEYWORDS
logging practice, machine learning, tool

ACM Reference Format:
Jing Zhu, Guoping Rong, GuochengHuang, Shenghui Gu, He Zhang, andDong
Shao. 2019. JLLAR: A Logging Recommendation Plug-in Tool for Java. In
Internetware ’19: Proceedings of the 11th Asia-Pacific Symposium on Inter-
netware (Internetware ’19), October 28–29, 2019, Fukuoka, Japan. ACM, New
York, NY, USA, 6 pages. https://doi.org/10.1145/3361242.3361261

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Internetware ’19, October 28–29, 2019, Fukuoka, Japan
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-7701- 0/19/10. . . $15.00
https://doi.org/10.1145/3361242.3361261

Table 1: The Terminologies Adopted In This Paper

Log A sequence of log entries. Logs are usually stored in a tex-
tual file or a database with typical information such as
timestamps, value of variables, recognizable text, etc.

Log Analysis An art and science seeking to make sense out of logs. Ana-
lysts utilize various techniques to analyze the existing logs
and retrieve useful information to support decisions

Logging Practice A common programming practice in modern software
development, typically issued by inserting logging state-
ments in source code.

Logging Statement The statements developers insert into source code in order
to record runtime information of software systems when
being triggered.

Logging Strategy The decision on where to log and what to log.

1 INTRODUCTION
As software systems become more widely used, modern software
systems are becoming more and more complicated and prone to
evolution, rendering big challenges for software engineers to main-
tain these software systems[16]. Logging technology has attracted
more and more attention since the resulted logs could be used to
capture the runtime behavior of software systems or services, which
provides valuable information for software maintenance. A variety
of software engineering tasks with diverse purposes depend on
logs, for example, debugging, monitoring, auditing, defect predic-
tion and so on [11, 16, 17, 24, 27]. In particular, logs are extremely
valuable for software developers and testers to diagnose failures
both in testing environment and production environment [14, 19].
Sometimes it is the only way for software engineers to deal with
production failures[19].

To facilitate elaboration and understanding, we first clarify sev-
eral terminologies commonly adopted in this paper. As shown in
Table 1.

Logging practice is a common programming practice in mod-
ern software development, typically issued by inserting logging
statements in source code. The importance of logging practice has
been widely recognized in industry [15]. In real-world production,
software engineers need to record the error or warning information
and the information indicating the success of an event as well so as
to establish an understanding to the dynamic behavior of software
systems. Apparently, to be useful, logs generated by logging state-
ments in the source code should be well-formed and informative,
which requires the corresponding logging practice to be carried out
properly. However, it is normally difficult to make sound decisions
to determine the context of logging statements (where to log?) and
the content of logging statements (what to log?) [13, 23, 29].

https://doi.org/10.1145/3361242.3361261
https://doi.org/10.1145/3361242.3361261

Internetware ’19, October 28–29, 2019, Fukuoka, Japan Jing Zhu, Guoping Rong, Guocheng Huang, Shenghui Gu, He Zhang, and Dong Shao

Study [5] lists several scenarios, with which developers should
not put logging statements. Meanwhile, the content of logging
statement could also influence its capability to capture the runtime
behavior of software systems. For example, study [12] reveals that
more than half of logging statements even do not contain any vari-
ables. Other issues regarding the logging practices include not using
log statements, missing log statements at key locations, inappropriate
use of log statement levels, and lack of parameter information, etc.[12]
As a matter of fact, a study based on open source project indicate
that logging practice is usually not consistently conducted across
the whole software system in most projects and some projects are
extremely low-level in terms of the density of logging statements,
rendering questionable satisfaction of the primary purpose of log-
ging practice, i.e., to capture the dynamic behavior of software
systems during runtime[25].

It seems that lacking of practical guidelines to carry out logging
practice is one of the reasons for the above phenomenon. In order to
address this problem, we designed and implemented a plug-in tool,
namely JLLAR (Java Log Lint and Analysis Plug-in) to help software
developers normalize logging practice and guarantee some well-
recognized best practices on logging practice be fully implemented.
To do this, a build-in rule set is applied in JLLAR, which is derived
from some well-recognized best practice on logging practice. We
also applied machine learning technology to identify actual context
for logging statements in actual software projects so as to further
refine the rule set.

The rest of this paper is organized as follows. The second section
introduces some relevant research status on logging practice and
supporting tools. Section III provides the design and implementa-
tion of the tool (i.e., JLLAR). Section IV shows some preliminary
evaluation results of JLLAR. We discuss the implication of our study
and the limitation as well in Section V. Finally, we conclude this
paper in the last section with suggestions for future work.

2 RELATEDWORK
The importance of logging practice in modern software engineer-
ing is widely recognized, which attracts a lot of attention among
researchers. In this section, we present the current research status
of logging practice.

2.1 Log Analysis
The majority of the researches on logging practice concentrates on
log analysis [1], which means analysts utilize various techniques
to analyze the existing logs and retrieve useful information to sup-
port decisions, e.g., causal paths [9], event correlations [14, 28],
component dependency [22], resource usage [3], etc.

2.2 Logging Practices
Apparently, log with high quality is the prerequisite of useful log
analysis, which requires logging practice being carried out prop-
erly. Nevertheless, compared to the large amount of studies on log
analysis, there are fewer studies focusing on logging practice.

Yuan et al. conducted a series of studies on logging practice.
For example, they confirmed the importance of logging practice
with quantitative evidences [8]. In another study [9], researchers
proposed an approach to enhance the existing logging statements

to collect causally-related information so as to reduce the burden
when diagnosing failures. In [7], Yuan et al. identified a number
of patterns for logging practice to put logging statements so as to
balance âĂĲover loggingâĂİ and âĂĲinsufficiently loggingâĂİ. To
make logging practice more effective, they proposed to automate
the placement of logging statements by measuring the degree of
software uncertainty that can be removed by adding a logging
statement [29]. The approach is able to compute an optimal logging
statement placement, disambiguating the entire function call path
with acceptable performance slowdown.

In spite of the aforementioned effort made by researchers, log-
ging has been still an arbitrary and subjective practice in industry.
There are no well-defined and broadly-accepted logging guidelines
for developers to refer to during software development [2, 23], not
to mention that some imperfect guidelines for logging practice can
be fully implemented in real-world software projects[25].

3 THE DESIGN OF JLLAR
In this section, we provide the design and implementation of the
tool. First, we introduce the process to establish a rule set which
is derived from serveral well recongnized best pracitce regarding
logging practice. Moreover, a machine learning technology is also
applied to refine the rules to reflect their application context in
pratice. Based on the rule set, a plug-in tool is proposed to support
programming in Java language.

3.1 Basic rule set
There are several well recognized best practices to address issues
related to logging practice in published literatures and technical
blogs, e.g., not using logging statements, missing logging statements
at key locations, inappropriate use of logging statement level, lack
of parameter and defect introduction. To collect these practices as
comprehensively as possible, we retrieved the literatures included
in a SLR (Systematic Literature Review) study [26] and extracted
the content related to either best practices or anti-patterns related
to logging practice, as shown in the Figure ??. Then we manually
we evaluate, convert, and filter these extracted results and establish
a basic rule set as shown in Table 2.

3.2 Refine rules
Basic rules provide a foundation for logging recommendation, how-
ever, real-world projects might take a different logging placement
strategy in production environment, as mentioned in subsection
??. Since there seems no simple solution to this issue, we adopted
machine learning technology to study the situation and context in
real-world software projects. Based on the model derived from ma-
chine learning, we refine the rule set behind JLLAR to recommend
logging practice better. Figure 1 shows the steps to convert textual
features to numeric textual features for the model building phase.

The main steps of this process are as follows:
(1) Use the Java parser to build an abstract syntax tree corre-

sponding to the Java file, traversing access to each number
node, accessing each logging code block.

(2) Use multiple regular expression filters to determine whether
a code block has a logging statement, and paste the tag for
the code block.

JLLAR: A Logging Recommendation Plug-in Tool for Java Internetware ’19, October 28–29, 2019, Fukuoka, Japan

Table 2: Built-in rules

Number Rule Description Problem

1 Using logging statements instead of system.out or system.err Not Using Logging Statements
2 Assertions need to be logged Missing Logging Statements At Key Locations
3 Exception needs to be logged Missing Logging Statements At Key Locations
4 Logical branches need to be logged Missing Logging Statements At Key Locations
5 Assertions need to be logged Missing Logging Statements At Key Locations
6 Logging in an exception should use ERROR or higher Inappropriate Use of Logging Statement Level
7 Logging statement should contain at least one variable Lack of Parameter

(3) Feature extraction, also using the Java parser for feature
extraction, the obtained features are divided into three types,
digital features, Boolean features and text features. Table 3
presents the features extracted in the previous section.

(4) Convert text features to digital text features through a text
mining classifier

(5) Classify the preprocessed data to generate a model
(6) Finally, cross-project forecasting and evaluation of experi-

mental results.

Figure 1: Process of Model Training

In the application, JLLAR extracts features from all the content
that has been written, enters into the model and returns the results
of the logging recommendation, as shown in Figure ??.

Table 3: Features

Number Feature Description Domain Type

1 Size of Try Block Try/Catch Numeric
2 Size of Method BT Method BT Numeric
3 Catch Exception Type Try/Catch Textual
4 Previous Catch Block Try/Catch Boolean
5 Logged Previous Catch Block Try/Catch Boolean
6 Logged Try Block Try/Catch Boolean
7 Logged Method BT Method BT Boolean
8 Logging Count in Try Block Try/Catch Numeric
9 Logging Count in Method BT Method BT Numeric
10 Logging Level in Catch Block Try/Catch Textual
11 Logging Level in Method BT Method BT Textual
12 Operators in Try Block Try/Catch Textual
13 Operators in Method BT Method BT Boolean
14 Operator Count in Try Blocks Try/Catch Numeric
15 Operator Count Method BT Method BT Numeric
16 Variable Count in Try Block Try/Catch Numeric
17 Variable Count in Method BT Method BT Numeric
18 Method Call Count in Try Block Try/Catch Numeric
19 Method Call Count in Method BT Method BT Numeric
20 Container Method have Parameter Other Boolean
21 Container Method Parameter Count Other Boolean
22 Container Method Parameter Type Other Textual
23 Container Method Parameter Name Other Textual
24 If in Try Try/Catch Boolean
25 If in Method BT Method BT Boolean
26 If Count in Try Try/Catch Numeric
27 If Count in Method BT Method BT Numeric
28 Container Package Name Other Textual
29 Container Class Name Other Textual
30 Container Method Name Other Textual
31 Variable Name in Try Block Try/Catch Textual
32 Variable Name in Method BT Method BT Textual
33 Method Call Name in Try Block Try/Catch Textual
34 Method Call Name in Method BT Method BT Textual
35 Throw/Throws in Try Block Try/Catch Boolean
36 Throw/Throws in Catch Block Try/Catch Boolean
37 Throw/Throws in Method BT Method BT Boolean
38 Return in Try Block Try/Catch Boolean
39 Return in Catch Block Try/Catch Boolean
40 Return in Method BT Method BT Boolean
41 Assert in Try Block Try/Catch Boolean
42 Assert in Catch Block Try/Catch Boolean
43 Assert in Method BT Method BT Boolean
44 Thread.Sleep in Try Block Try/Catch Boolean
45 Interrupted Exception Type Try/Catch Boolean
46 Exception Object ’Ignore’ in Catch Try/Catch Boolean

In the end, we get the results as shown in Table 4. It can be seen
from the comparison results of the indicators that the prediction
effects of the algorithms are not much different. Under the com-
prehensive comparison, the indicators of the random forest model
are slightly superior, and the AUC index is significantly higher.
Adaboost, also higher than the other three models, shows that its
classification effect is the best.

3.3 Tool design
IntelliJ IDEA1 is an integrated development environment for the
Java programming language. It is recognized as one of the best

1https://www.jetbrains.com/idea/

Internetware ’19, October 28–29, 2019, Fukuoka, Japan Jing Zhu, Guoping Rong, Guocheng Huang, Shenghui Gu, He Zhang, and Dong Shao

Table 4: Evaluation of Indicator Results of Models

Algorithm Prediction Recall F-measure Accuracy RA

Adaboost[10] 0.982 0.314 0.476 0.825 0.695
SVM[6] 0.979 0.311 0.472 0.824 0.769

Naive Bayes[20] 0.959 0.313 0.476 0.823 0.766
Random Forest[4] 0.987 0.317 0.476 0.825 0.786

Logistics Regression[21] 0.982 0.314 0.476 0.825 0.695

Java development tools in the industry, especially in intelligent
code assistants, code prompts, refactoring, J2EE support, various
version tools, JUnit, CVS integration, code analysis, innovative GUI
design, etc. The function can be said to be extraordinary. RebelLabs
conducted a survey of Java tools and technologies for 2016, with
46% of developers using IntelliJ IDEA, which has exceeded 41% of
Eclipse[18].

Virtual File System. The Virtual File System is a component of
the IntelliJ platform that encapsulates most of the activities used to
process files. Its main uses include:

Program Structure Interface. The program structure interface is a
layer in the IntelliJ platform that is responsible for parsing files and
creating syntax and semantic code models that support so many
platform features.

Component Persistence. Component Persistence is an API pro-
vided by the IntelliJ platform that allows components or services to
restart their state between persistent IDEs. You can use a simple API
to save some values, or use the PersistentStateComponent interface
to save the state of more complex components.

3.3.1 Architecture. The architecture diagram of JLLAR is shown
in the Figure 2, with a total of eight main modules. The GUI mod-
ule is responsible for providing an interface to the user, including
a log frame configuration interface, a built-in rule configuration
interface, and a custom rule editing interface. The Config module is
responsible for storing various configurations of the user. The Rules
module is responsible for checking the rules of the code. The Pro-
posal module is responsible for providing log statement suggestions.
The Classifier module is responsible for training the recommended
model. The Inspection module is responsible for scanning the code
in real time and highlighting it. The Quickfix module is responsible
for providing suggestions for modifications and automatically gen-
erating code. The Util module is responsible for providing shared
logic.

4 PRELIMINARY EVALUATION RESULTS
In this section, we will show the actual application of the JLLAR
tool in the open source project Tomcat.

After launching the JLLAR plug-in, it will inspect the code ac-
cording to the rule set in real time. When existing violation code, it
will show the yellow light bulb and provide quickfix including level
recommendation to help generate logging statements. After opti-
mizing rules with the machine learning technique, it can inspect
the code more accurately.

Figure 2: Architecture of JLLAR

4.1 Rule Inspection in the Catch Block
Taken this rule that exception needs to be logged as an example, as
shown in Figure 3, it recommends to log the catch block because
the developer did nothing before.

Figure 3: Rule Inspection in the Catch Block

As shown in Figure 4, quickfix generates a logging statement
with error level in the catch block that requires developer to fill
some message.

Figure 4: Quickfix in the Catch Block

After optimizing this rule, it is not recommended to log the catch
block because in fact the developer handled the exception with a
return statement, as shown in Figure 5.

Figure 5: Rule Inspection in the Catch Block after Optimiza-
tion

We count the number of issures before and after rule optimization
in Tomcat. The result is shown in Table 5.

JLLAR: A Logging Recommendation Plug-in Tool for Java Internetware ’19, October 28–29, 2019, Fukuoka, Japan

Table 5: Result of Rule Optimization in the Catch lock in
Tomcat

Number of Issues Before Optimization Number of Issues After Optimization

784 152

4.2 Rule Inspection in the If Block
Taken this rule that logic branch needs to be logged as an example,
as shown in Figure 6, it recommends to log the if block because the
developer didn’t distinguish condition of the logic branch.

Figure 6: Rule Inspection in the If Block

As shown in Figure 7, quickfix generates a logging statement
with error level in the if block that requires developer to fill some
message.

Figure 7: Quickfix in the If Block

After optimizing this rule, it is not recommended to log the if
block because in fact the developer handled the logic branch with
throw statement, as shown in Figure 8.

Figure 8: Result of Rule Optimization in the If Block in Tom-
cat

The result is shown of this rule’s optimization in Table 6.

5 DISCUSSIONS
In this section, we will discuss the implication and threats to validity
in our study.

5.1 Implication
The logging practice among distinct developers differ from each
other to a very large extent. Not only the density of logging state-
ments, but also the contents (what to log?) of logging statements
vary among different developers[25]. With this ad-hoc manner to
carry out the logging practice, we have to doubt whether logs can
provide a reliable source of information for log analysis to establish
a correct understanding of the runtime behavior of the program. In
this study, we first and refine a rule set to help implementation of

Table 6: Optimization in Tomcat

Number of Issues Before Optimization Number of Issues After Optimization

3847 261

several well recognized best practice on logging practice. Then we
design a tool to help developers to do better logging in software
development. Our work at this stage may reveal several interesting
fact around logging practice in software development.

First, although the importance of logging practice is well rec-
ognized in software engineering, the implementation is far from
satisfactory. In fact, when we evaluated JLLAR, we also identified
many code snippets violating the logging rules we established in
subsection 3.2.

Second, it seems that there is no simple solution to provide a
“best” logging strategy. On the one hand, even in the aforemen-
tioned scenarios of rule violation, developers may choose not to
put logging statements for the purposes of performance or security.
On the other hand, the same rules may have some variations in
different situations.

Last but not least, current logging practices often lack a com-
prehensive strategy, i.e., at present, we usually consider whether a
logging statement should be inserted in a small code snippet and
what the content of a logging statement. However, since there are
multiple calling relationships between different levels of modules
in one software system, it might not be an optimal choice to inject
logging statements anywhere that meets the rules.

5.2 Threats to Validity
At this early stage, there are several considerations and limitations
about both the research process and conclusions.

Project characteristics. Apparently, this study only involves 3
projects with Java language, which may have a limitation on gener-
alization, i.e., to apply the results in other projects. However, since
the projects involved in this study are very large in size, covering
many logging scenarios, which may to a fair degree mitigate this
limitation. As a matter of fact, the results of cross-project evaluation
have shown that the model still has good applicability on different
types of projects. Nevertheless, since the machine learning model
is trained using Java language, we believe similar work on other
languages should be conducted in future.

Open source projects. We carried out this study using open source
projects, which to a certain degree limited our capability to gener-
alize the results in this study to other scenarios, e.g., other open
source projects and commercial projects. In particular, logging prac-
tice in commercial software project differ from open source projects
greatly. In this sense, more investigation should be conducted with
different types of software systems.

Field evaluation. At this stage, we only performed a preliminary
evaluation by applying JLLAR in the projects involved in this study.
However, we believe a gapmay exist between the experimental eval-
uation and field adoption, i.e., to what degree, the developers will
accept the recommended logging strategy. In fact, the revised rules
are mainly based on a largely accepted logging strategy method.

Internetware ’19, October 28–29, 2019, Fukuoka, Japan Jing Zhu, Guoping Rong, Guocheng Huang, Shenghui Gu, He Zhang, and Dong Shao

Developers may have special considerations regarding the logging
strategy. In this sense, it is necessary to carry out field evaluation
on JLLAR as soon as possible.

6 CONCLUSION
Given the importance of the quality of logs and several issues
existing in real-world logging practice, we devised a plug-in tool
called JLLAR for the Java language on the Intellij IDEA platform,
one of the most popular integrated development environment to
support software developers to carry out logging practice. The main
contributions of this paper can be highlighted as follows:

First, we extracted some best practices reported in relevant liter-
ature on logging practice and transformed these best practices into
rules to guide logging practice.

Second, we appliedmachine learning technology to further refine
the rules derived from recognized best practice regarding logging
practice so that these rules could be adopted as similarly as possi-
ble to the actual placement of logging statements in open source
projects.

Last but not least, based on the refined rule set, a plug-in tool
was designed and implemented to support developers to carry out
logging practice. For example, JLLAR can scan existing source code
and identify missing logging statements or to insert/correct logging
statement automatically.

There are still several limitations for this study at this preliminary
stage, therefore, we suggest four major topics for future work.

• JLLAR need to be evaluated in real-world software develop-
ment in order to collect developers’ feedback and improve
the tool.

• JLLAR has some built-in some logging rules, in order to solve
some common problems, and finally achieve the objective
of improving the quality of logging practice in software
development. In the future, we still need to further refine
the rule set to cover more coding scenarios.

• The accuracy of in the source project is about 95%, and the
cross-project test also reaches 82%, but the shortcoming is
that the accuracy of the logging statement level decision
is only about 60%, which may be related to the choice of
features, so it needs to be improved in the future.

• Since more and more programing languages are applied in
modern software projects, JLLAR should be improved to
support different programming languages, e.g., python, go,
etc.

REFERENCES
[1] A. Ganapathi A. Oliner and W. Xu. 2012. Advances and challenges in log analysis.

Commun. ACM 55, 2 (February 2012), 55–61.
[2] G. Carrozza A. Pecchia, M. Cinque and D. Cotroneo. 2015. Industry practices and

event logging: Assessment of a critical software development process. In 2015
IEEE/ACM 37th IEEE International Conference on Software Engineering (ICSE ’15).
IEEE, 169–178.

[3] J. L. Hellerstein R. Rifaat B. Sharma, V. Chudnovsky and C. R. Das. 2011. Modeling
and synthesizing task placement constraints in Google compute clusters. In
Proceedings of the 2Nd ACM Symposium on Cloud Computing (SOCC ’11). ACM,
New York, NY, USA, 3:1–3:14.

[4] Leo Breiman. 2001. Random Forests. Machine Learning 45, 1 (01 Oct 2001), 5–32.
https://doi.org/10.1023/A:1010933404324

[5] B. Chen and Z. M. J. Jiang. 2017. Characterizing and detecting Anti patterns in
the logging code. In Proceedings of the 39th International Conference on Software
Engineering (ICSE ’17). IEEE, Piscataway, NJ, USA, 71–81.

[6] Corinna Cortes and Vladimir Vapnik. 1995. Support-vector networks. Machine
Learning 20, 3 (01 Sep 1995), 273–297. https://doi.org/10.1007/BF00994018

[7] P. Huang Y. Liu M. M. J. Lee X. Tang Y. Zhou D. Yuan, S. Park and S. Savage.
2012. Be conservative: Enhancing failure diagnosis with proactive logging. In
Proceedings of the 10th USENIX Symposium on Operating Systems Design and
Implementation (OSDI ’12). 293–306.

[8] S. Park D. Yuan and Y. Zhou. 2012. Characterizing logging practices in Open-
Source software. In Proceedings of the 34th International Conference on Software
Engineering (ICSE ’12). IEEE Press, Piscataway, NJ, USA, 102–112.

[9] S. Park Y. Zhou D. Yuan, J. Zheng and S. Savage. 2012. Improving software
diagnosability via log enhancement. ACM Transactions on Computer Systems 30,
1 (1 February 2012), 4:1–4:28.

[10] Yoav Freund, Robert Schapire, and Naoki Abe. 1999. A short introduction to
boosting. Journal-Japanese Society For Artificial Intelligence 14, 771-780 (1999),
1612.

[11] M. Goldszmidt J. Symons T. Kelly I. Cohen, S. Zhang and A. Fox. 2005. Capturing,
indexing, clustering, and retrieving system history. In Proceedings of the Twentieth
ACM Symposium on Operating Systems Principles (SOSP ’05). ACM, New York,
NY, USA, 105–108.

[12] H. Idan. [n. d.]. Github research: Over 50% of java logging statements are written
wrong. Retrieved February 7, 2017 from https://blog.takipi.com/github-research-
over-50-of-java-logging-statements-are-written-wrong/

[13] Q. Fu H. Zhang M. R. Lyu J. Zhu, P. He and D. Zhang. 2015. Learning to log:
Helping developers make informed logging decisions. In 2015 IEEE/ACM 37th
IEEE International Conference on Software Engineering (ICSE ’15). IEEE, 415–425.

[14] C. Killian K. Nagaraj and J. Neville. 2012. Structured comparative analysis of
systems logs to diagnose performance problems. In Proceedings of the 9th USENIX
Conference on Networked Systems Design and Implementation (NSDI ’12). USENIX
Association, Berkeley, CA, USA, 26–26.

[15] B. W. Kernighan and R. Pike. 1999. The practice of programming. Addison-Wesley
Professional.

[16] J. L. Wiener P. Reynolds M. K. Aguilera, J. C. Mogul and A. Muthi tacharoen. 2003.
Performance Debugging for Distributed Systems of Black Boxes. In Proceedings
of the Nineteenth ACM Symposium on Operating Systems Principles (SOSP ’03).
ACM, New York, NY, USA, 74–89.

[17] D. Dagit R. B. Bobba M. Montanari, J. H. Huh and R. H. Camp bell. 2012. Evidence
of log integrity in policy-based security monitoring. In IEEE/IFIP International
Conference on Dependable Systems and Networks Workshops (DSN ’12). IEEE, 1–6.

[18] Simon Maple. [n. d.]. Java Tools and Technologies Landscape Report
2016. Retrieved July 14, 2016 from https://jrebel.com/rebellabs/java-tools-
and-technologies-landscape-2016/

[19] L. Mariani and F. Pastore. 2008. Automated identification of failure causes
in system logs. In 2008 19th International Symposium on Software Reliability
Engineering (ISSRE ’08). IEEE, 117–126.

[20] Andrew McCallum, Kamal Nigam, et al. 1998. A comparison of event models
for naive bayes text classification. In AAAI-98 workshop on learning for text
categorization, Vol. 752. Citeseer, 41–48.

[21] Andrew Y Ng and Michael I Jordan. 2002. On discriminative vs. generative
classifiers: A comparison of logistic regression and naive bayes. In Advances in
neural information processing systems. 841–848.

[22] A. J. Oliner and A. Aiken. 2011. Online detection of multi-component interac-
tions in production systems. In 2011 IEEE/IFIP 41st International Conference on
Dependable Systems Networks (DSN). IEEE, 49–60.

[23] W. Hu J.-G. Lou R. Ding Q. Lin D. Zhang Q. Fu, J. Zhu and T. Xie. 2014. Where do
developers log? an empirical study on logging practices in industry. In Companion
Proceedings of the 36th International Confer- ence on Software Engineering (ICSE
Companion 2014). ACM, New York, NY, USA, 24–33.

[24] Y.WangQ. Fu, J.-G. Lou and J. Li. 2009. Execution anomaly detection in distributed
systems through unstructured log analysis. In 2009 Ninth IEEE International
Conference on Data Mining (ICDM ’09). IEEE, 149–158.

[25] Guoping Rong, Shenghui Gu, He Zhang, Dong Shao, and Wanggen Liu. 2018.
How Is Logging Practice Implemented in Open Source Software Projects? A
Preliminary Exploration. 2018 25th Australasian Software Engineering Conference
(ASWEC) (2018), 171–180.

[26] Guoping Rong, Qiuping Zhang, Xinbei Liu, and Shenghiu Gu. 2017. A Systematic
Review of Logging Practice in Software Engineering. In 2017 24th Asia-Pacific
Software Engineering Conference (APSEC). IEEE, 534–539.

[27] A. Fox D. Patterson W. Xu, L. Huang and M. I. Jordan. 2009. Detecting large-scale
system problems by mining console logs. In Proceedings of the ACM SIGOPS 22Nd
Symposium on Operating Systems Principles (SOSP ’09). ACM, New York, NY, USA,
117–132.

[28] J. Zhan W. Zhou Z. Jia X. Fu, R. Ren and G. Lu. 2012. LogMaster:Mining event
correlations in logs of Large-Scale cluster systems. In 2012 IEEE 31st Symposium
on Reliable Distributed Systems. IEEE, 71–80.

[29] Y. Luo M. Stumm D. Yuan X. Zhao, K. Rodrigues and Y. Zhou. 2017. The game
of twenty questions: Do you know where to log?. In Proceedings of the 16th
Workshop on Hot Topics in Operating Systems (HotOS ’17). ACM, New York, NY,
USA, 125–131.

https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1007/BF00994018
https://blog.takipi.com/ github-research-over-50-of-java-logging-statements-are-written-wrong/
https://blog.takipi.com/ github-research-over-50-of-java-logging-statements-are-written-wrong/
https://jrebel.com/rebellabs/java-tools-and-technologies-landscape-2016/
https://jrebel.com/rebellabs/java-tools-and-technologies-landscape-2016/

	Abstract
	1 Introduction
	2 Related Work
	2.1 Log Analysis
	2.2 Logging Practices

	3 The Design of JLLAR
	3.1 Basic rule set
	3.2 Refine rules
	3.3 Tool design

	4 Preliminary Evaluation Results
	4.1 Rule Inspection in the Catch Block
	4.2 Rule Inspection in the If Block

	5 Discussions
	5.1 Implication
	5.2 Threats to Validity

	6 Conclusion
	References

