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Abstract—Continuity and steadiness are vital for services with massive users, which requires the anomalies of services should be
detected and resolved in a timely manner. Our previous work proposed a tool, namely ImpAPTr (Impact Analysis based on Pruning
Tree), to identify the combination of multiple dimensional attributes as the clues leading to the root cause of service anomalies. However,
ImpAPTr applies a threshold driven strategy, i.e. it needs to be triggered by a ≥ 0.05% drop of the success rate of the service calls
(abbr. SRSC), which may face problems in an atypical yet pervasive situation in field application. For example, the combination of trivial
anomalies (i.e. each causes a drop less than 0.05% to SRSC) can lead to a far more than 0.05% drop on SRSC. Besides, a suitable
threshold is usually hard to be determined, etc. To address these problems, we propose a new method, namely ImpAPTr+ in this paper
to free the constraint of the 0.05% threshold. The basic idea is to involve time dimension and identify clues across multiple time intervals
of data. We performed evaluation on three typical methods (i.e. ImpAPTr+, R-Adtributor and Squeeze) with both production environment
dataset and simulation dataset. The former dataset is directly retrieved from the service monitoring data in Meituan, one of the largest
on-line service providers worldwide. The latter dataset is fabricated also using the monitoring data from the same company. The results
indicate: (1) ImpAPTr+ outperforms previous approaches to a large degree in terms of accuracy. (2) Both ImpAPTr+ and R-Adtributor
are able to find proper clues within seconds. (3) ImpAPTr+ tends to find proper clues with shorter time intervals (i.e. less data), which
implies that the method is more suitable for near real-time monitoring scenarios.

Index Terms—On-line service monitoring, Anomaly clues locating, Multiple dimensional attributes

✦

1 INTRODUCTION

NOWADAYS, tremendous Internet companies provide
diversified services through various on-line software

systems. The continuity and reliability of services are thus
critical since even a slight decline of the success rate of ser-
vice calls (abbr. SRSC) may have impacted a large number
of users already. In this sense, it is important to monitor
SRSC, detect and resolve anomalies impacting SRSC in a
timely manner. Several Application Performance Manage-
ment (APM) systems have been adopted to perform such
monitoring, for example, CAT1, Prometheus2, Pinpoint3,
SkyWalking4 and Zipkin5 are all popular APM tools with
massive users. Nevertheless, monitoring SRSC only cannot
eliminate an anomaly. We also need to identify and address
its root cause, which is not an easy job in many on-line
systems. The main reason is that current software services
are more and more distributedly deployed and ubiquitously
accessed than ever (e.g., through various devices, regions,
etc.), therefore an anomaly such as a Declining Success Rate
(DSR∆) may occur due to complex reasons in a production
environment. Although most APM tools could capture the

* He Zhang is the corresponding author.
1. https://github.com/dianping/cat
2. https://prometheus.io/
3. https://pinpoint-apm.github.io/pinpoint/
4. https://skywalking.apache.org/
5. https://zipkin.io/

trace of service calls and the corresponding responses, the
captured information may contain multi-dimensional at-
tributes (e.g., City, ISP, Software Version, etc.) with multiple
values for each attribute, for example, the ISP could be T-
Mobile, Vodafone, CMCC, etc. Take a combination S (4G,
ABC, CMCC, 1.0.1, iOS) for example, it denotes that a
service call is from an iOS device using CMCC 4G network
in City ABC and the APP version is 1.0.1. Apparently, S
may provide useful clues to identify the root cause for an
anomaly. However, locating S is not easy in a production
environment, given that there might be tens of thousands of
possible combinations and the time slot allowed for locating
S is usually slim. Note that S may only contain partial
dimensional attributes of the trace information for a service
call and response.

Fig. 1 depicts a typical example of what happens when
DSR∆ occurs and SRSC recovers later on. The data behind
this figure is extracted from the actual production environ-
ment in Meituan, one of the companies with the largest scale
on-line business worldwide. In the first time interval t1 (i.e.
07:55∼08:00), for example, the SRSC is 99.52% with 30085
requests to this service. However, in the second interval
t2 (i.e. 08:00∼08:05), the SRSC suddenly drops to 98.65%,
indicating a DSR∆ of 0.87% and nearly 402 failed service
responses. In the comparison of t1 and t2, the number of
requests in t2 is 29845, which is quite similar to that in t1.
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We can observe that the SRSC recovers to 98.99% in the third
interval t3 (i.e. 08:05∼08:10), while the number of requests
in this interval declines to 28390. In the fourth interval t4
(i.e. 08:10∼08:15), the SRSC is 98.81%, indicating a DSR∆

of 0.18%. In the fifth time interval t5 (i.e. 08:10∼08:15), the
SRSC slightly declines to 98.78% (DSR∆ 0.03%) while the
request number is 33655. Note that there are nearly 410
failed service responses during t5, which is even more than
the failures in t2.

Fig. 1: Trend of success rate of service calls

In our previous study, we proposed a method (ImpAPTr)
to identify the valid combination of multiple attributes
which serves as a clue leading to the root causes for a
certain anomaly [1]. However, ImpAPTr requires a prede-
fined threshold of 0.05% DSR∆ in current time interval
(normally 5 minutes) compared to its immediately previous
time interval to confirm an anomaly and then be triggered
to perform analysis and discriminate the most likely clues
as well. Although ImpAPTr has been successfully adopted in
Meituan, it has encountered several new challenges during
its execution.

• Firstly, a suitable threshold is usually determined by
many factors which is thus difficult to be decided.
In [1], ImpAPTr applied a threshold of 0.05% which
is required by the operations management based on
their experience and department policy. However, a
fixed threshold may lack of both efficacy and effi-
ciency under different contexts such as service types,
user groups, timing, etc. For example, addressing the
anomalies (even with larger than 0.05% DSR∆) to
a non-core service during off-peak periods may not
bring noticeable benefits for business.

• Secondly, as shown in Fig. 1, although a declining
trend to SRSC is observable, which has already im-
plied the existence of anomalies, yet the DSR∆s in
multiple time intervals might not exceed the prede-
fined threshold (i.e. 0.05%). While this phenomenon
is not rare in the production environment, the chal-
lenge is however to determine a proper timing to run
ImpAPTr.

• Last but not least, ImpAPTr cannot handle a combina-
tion of trivial anomalies, i.e. each anomaly results in

less than 0.05% drop on SRSC, but as an accumula-
tion may cause a DSR∆ much larger than 0.05%. As
a matter of fact, under this situation, even ImpAPTr
will be triggered to perform analysis, it will not gen-
erate any proper clues since ImpAPTr also uses 0.05%
DSR∆ as the criteria to prune the element tree (a tree
structure derived from the combinations of multi-
dimensional attribute values, cf. Section 3.3.3). On
the other hand, for the services with massive users,
a DSR∆ of 0.05% (even less) may have impacted
a large number of users already and the number
may continue to grow if the root cause could not be
addressed quickly.

It seems that a reactive strategy (i.e. a pure threshold
driven policy to run ImpAPTr) may not be able to bring as
much as possible benefit to the business in practice, thus
a proactive strategy turns to be desired to strengthen its
capability regarding observability [2] to the complex sys-
tems supporting various on-line services in this company.
Motivated by this urge, we extended our previous study [1]
and proposed a redesigned method, namely ImpAPTr+ to
free the constraints derived from the 0.05% threshold. To be
specific, we remove any DSR∆ threshold and involve time
factor into ImpAPTr+ to identify a clue using the monitoring
data (i.e. the records of service calls captured by the APM
tool) across multiple time intervals. Compared with the
previous study [1], the major extension and differences are
listed in TABLE 1. As shown in this table, the text in bold de-
scribes the differences between this work and our previous
study [1] from four aspects, i.e. targeting problem, locating
algorithm, research process and implications, meaning that
a new study to address new problems with new solutions
will be presented in this paper. Meanwhile, the two studies
also share certain similar elements, e.g., the characteristics
of the clues (i.e. multiple dimensions), the requirement
of timeliness, the evaluation strategy (i.e. both production
dataset and fabricated dataset involved), and one criterion
to perform evaluation (i.e. the time required to analyze the
data from one time interval), as depicted in TABLE 1 with
regular-font text.

In general, the contribution of our study can be high-
lighted as follows.

• Firstly, a new method (ImpAPTr+) to identify clues
leading to the root causes of anomalies has been de-
signed which is able to work without any predefined
threshold on DSR∆. In this way, ImpAPTr+ can per-
form proactive and persistent analysis to detect clues
associated with even trivial anomalies. Based on their
contribution to DSR∆, potential clues are sorted to
imply the most worthy investigation direction.

• Secondly, we conduct empirical evaluations on three
methods, i.e. ImpAPTr+, R-Adtributor and Squeeze
with both production environment dataset and new
designed simulation dataset to investigate their per-
formance extensively. The results indicate that Im-
pAPTr+ outperforms the other two methods in terms
of accuracy. Both ImpAPTr+ and R-Adtributor can
locate a proper clue within seconds. Meanwhile,
ImpAPTr+ tends to use less data (time intervals) to lo-
cate a proper clue, which to a certain degree implies
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TABLE 1: A brief comparison between this study and the previous study [1]

Aspects Previous study (ImpAPTr) Current study (ImpAPTr+) Elaborated in

Targeting problem

· To identify the most likely clues leading to the root
causes of anomalies to services using a predefined and
fixed threshold (i.e. 0.05% DSR∆)
· The clues are combinations of multi-dimensional attributes.
· The value of each multi-dimensional attribute should be

determined in a timely manner from massive service calls.

· To identify the most likely clues leading to the root
causes of anomalies to services without any predefined
threshold
· The clues are combinations of multi-dimensional

attributes also.
· The value of each multi-dimensional attribute should

also be determined in a timely manner from massive
service calls.

Section 1, 2,
3.2 and 7.

Locating algorithm

· A breadth-first traversal on the element tree which uses
CP (Contribution Power), IF (Impact Factor) and
DF (Diversity Factor) as the differentiate factors to rank
potential clues.
· 0.05% DSR∆ is not only a threshold to determine

an anomaly, but also a criterion to prune the
corresponding element tree.

· A breadth-first traversal on the element tree which
uses Ranking Score as the differentiate factor to rank
potential clues.
· Ranking Score is calculated using the Euclidean Distance

on IF and DF, which further transforms into
Weighted Ranking Score to reflect the historical
effect for a potential clue.

Section 4.

Research process

· Both real production dataset and fabricated dataset
are used in evaluation.
·We applied ≥ 0.05% DSR∆ as the criterion to

prepare both datasets.
· Both accuracy and efficiency are evaluated.

· Both real production dataset and fabricated dataset
are used in evaluation.
· A time box including 6 intervals is determined

based on the observation to the data characteristics
from the production dataset, which further applied
in dataset fabrication.
· No criterion on DSR∆ is required to select the real

production dataset or prepare the fabricated dataset.
However, to perform the evaluation, we planted
relatively trivial DSR∆(i.e., 0.01% to 0.03%) to the
fabricated dataset.
· Both accuracy and efficiency are evaluated. However,

due to different targeting problem, efficiency is
evaluated from three perspectives, i.e., time to analyze
the data from one time interval, time to identify a clue
correctly, and timing to identify a clue correctly.

Section 5

Implications

· Using 0.05%DSR∆, a reactive strategy is able to
identify useful clues with multi-dimensional
attributes leading to service anomalies in a matter of
seconds in real production environment in Meituan.

·Without any threshold constraint, ImpAPTr+ supports
a proactive identification to useful clues with
multi-dimensional attributes leading to service
anomalies in dozens of seconds in real production
environment in Meituan.

Section 1, 6
and 7

that ImpAPTr+ can be deployed in the production
environment to provide a near real-time monitoring
to the SRSC for a service.

2 RELATED WORK

Driven by business needs, detecting service anomalies,
locating and addressing their root causes attract many re-
searchers’ interests. Research on anomaly detection typically
concentrates on detecting or confirming the occurrence of
anomalies to on-line services. Both statistics based meth-
ods (e.g., [3], [4], [5], [6]) and machine learning based
methods (e.g., [7], [8], [9], [10], [11], [12], [13], [14]) have
been extensively explored and investigated in recent years.
Nevertheless, as discussed above, the targeting problem we
need to address is to timely locating a combination of multi-
dimensional attributes as the clues/root causes associated
with an anomaly regarding SRSC to on-line services. As
reflected in Fig. 1, for on-line services with massive users,
it is nearly impossible to achieve 100% success rate of
service calls and responses, implying a constant occurrence
of anomalies, though it may not be economical to dig the
root causes out sometimes.

Locating and addressing root cause (we use this term
in this section) of anomalies also attracted considerable
research effort. Based on the number of dimensional at-
tributes involved, there are two types of research, i.e. single
attribute and multiple dimensional attributes. Meanwhile,
perhaps driven by the proliferation of on-line services with
massive users, trivial anomalies began to attract researchers’
attention recently.

2.1 Single attribute

This type of studies focus on locating the root cause
using single attribute. Some experimental cases are pro-
vided in [15] on locating causes of anomaly pertinent to
CDN (Content Delivery Network) and routers via the DAG
(Directed Acyclic Graph), which is formed by tracing logs
using the “X-trace” framework [16]. Lou et al. [17] and
Chow et al. [18] focus on the root cause of the error logs
of all components within the tracing path by establishing
a causal graph. In [19], researchers diagnose the network
problems occurring on the network components based on
a decision tree [20]. Shrink [21], [22] and SCORE [23] are
two typical methods focusing on the fault locating in IP
networks based on risk models and SRLGs (Shared Risk
Link Groups) [24]. FOCUS [25] is designed to find out the
root cause of HSRT (High Search Response Time), where
images, browser engines, ISP and other factors have been
explored. The root cause locating of performance related
problems has been studied in [26], [27], [28], [29], [30], [31]
for different business contexts, and there are also plenty of
studies [32], [33], [34], [35], [36], [37] on root cause locating
for other issues such as network problems and system-log
related anomalies.

2.2 Multiple dimensional attributes

Methods dealing with multiple dimensional attributes
can be further divided into two types based on the measures
applied, i.e. basic measure (e.g., the number of service calls)
and derived measure (e.g., SRSC in this paper).
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Adtributor [38] works with both types of measures but
can only perform locating using one dimensional attribute
at a time. As the improved version of Adtributor, R-
Adtributor [39] is proposed to execute recursive calls based
on the results of Adtributor to address this limitation. How-
ever, since the recursive depth is hard to be determined
beforehand, the results may be incorrect. HotSpot [40] can
only work with basic measures to locate root cause of multi-
dimensional attributes. It uses Monte Carlo Search Tree [41]
to reduce the search space. iDice [42] also works for ba-
sic measures and multi-dimensional attributes. Apriori [43]
can deal with derived measures and multi-dimensional
attributes, but the running time is always too long to be
adopted in the production situation described in this paper.
Squeeze [44] improves HotSpot to deal with derived measures
and avoids omitting some important elements which may
be pruned in the original HotSpot approach. Ahmad et al.
also proposed an machine learning-based approach that
detects and locates root cause of end-to-end performance
degradation along with four dimensional attributes in cellu-
lar services [45].

2.3 Trivial anomaly detection and analysis

Although there is no widely accepted criteria to define a
“trivial anomaly”, the ever-growing scale of on-line services
has formed the necessity to concern trivial, or subtle anoma-
lies, as even trivial anomalies can affect a considerable
number of users. Another important reason is that trivial
anomalies can be very common in real-world environment,
and the potential long tail effect, regarding the existence of
similar phenomenon in cloud services’ response times [46],
may further magnify the trivial anomalies’ impact on user
experience. Notably, the presence of trivial anomalies has
been mentioned in [47], [48], [49]. Nevertheless, how to
locate the root cause of the detected trivial anomalies has
not been studied in these work.

As a rule of thumb, the detection or analysis of trivial
anomalies needs more information to generate meaningful
differences or patterns. A technology called contrast data
mining [50] has thus been applied to perform root causes
analysis [51], [52]. Contrast data mining could discover con-
trast patterns which describe significant differences between
datasets. Intuitively, persistently identifiable and significant
differences should exist before contrast patterns can be rec-
ognized. To achieve this, researchers in [52] differentiates the
test group (traces with bug) from the control group (traces
without bug) to support pattern recognition. The framework
proposed in [51] extracts basic measures from the structured
logs to support frequent item-set mining. When applying to
non-discrete anomaly indicators such as latency, acceptable
values of latency should also be manually differentiated
from the non-acceptable values. However, the complicated
production environment and ever-changing SRSC (a non-
discrete derived measure) make it difficult to have a rela-
tively healthy dataset to be used as the contrast basis. For
example, a combination S might contain both successful
and failed requests in one time interval. Besides, the same S
may appear in one time interval but disappear in the follow-
ing time intervals. To provide more information, continuous
monitoring which captures the dynamics of the underlying

system and is able to involve more information from the
time dimension is thus believed to have a potential to be
widely used for root cause analysis [53].

With reference to [44] and our previous work [1], we
list several potential methods in TABLE 2, to the best of
our knowledge. However, the characteristics of the targeting
problem described in this paper (i.e. multiple dimensional
attributes involved, continuous impacts on a derived mea-
sure such as DSR∆, and relatively short time to perform
the analysis, etc.) cast challenges to develop applicable
solutions. According to TABLE 2, only Squeeze [44], R-
Adtributor [39] and ImpAPTr [1] have the potential to be
valid solutions. Nevertheless, as mentioned above, ImpAPTr
needs a predefined threshold, which is not ready for out-of-
the-box application.

TABLE 2: A brief comparison to existing root cause location
methods

Method SA or MA1 BM or DM2 Time Cost
HotSpot [40] MA BM sometimes long
Adtributor [38] SA BM&DM very short
R-Adtributor [39] MA BM&DM short
iDice [42] MA BM very short
Apriori [43] MA BM&DM always too long
Squeeze [44] MA BM&DM short
ImpAPTr [1] MA DM short
1 SA: Single Attribute; MA: Multiple Attributes
2 BM: Basic Measure; DM: Derived Measure

3 PROBLEM STATEMENT

In general, compared to ImpAPTr [1], the ImpAPTr+
proposed in this study performs different analysis with the
same information collected by the CAT system. Therefore,
we reuse most content regarding the description of the
targeting problem in [1] here. Meanwhile, differences on
threshold requirement, processing tool, etc. are also elab-
orated in this section.

3.1 “Root Cause” or “clue”

Many studies use “root cause” to indicate the reason for
a certain anomaly which is the objective for many locating
algorithms. However, for many cases in practice, many
times the genuine reason may be covered and concealed
beneath a thick layer of symptoms. For example, the com-
bination of (SH, 4G) could either be some malfunction of
4G network occurred in the region of SH (which we may
not know why yet) or some issues existing in the source
code which make the corresponding service unstable during
the turbulence of network data. While the combination of
(SH, 4G) in the former scenario may justify the literally
meaning of “root cause”, it only represents the clues leading
to a root cause in the latter scenario. In this sense, we use
“clues” instead in this paper, meaning a worthy direction
for engineers to carry out further investigation. As a matter
of fact, along with the popularity of cloud computing, it is
commonly more difficult (if not impossible) to locate the
genuine reasons for anomalies since the infrastructure can
be complicated and transparent to the operations staff of
business systems [54], [55], [56]. In this sense, finding valid
clues should be taken as a more practical objective for the
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TABLE 3: Terms and concepts used in this study

Terms & Concepts Definition Notation Example
Dimensional Attribute The category of information (data) contained in a service call – Network, Connect-Type, Platform, ISP, City, etc.
Attribute Value The value of a certain dimensional attribute – Take Network for example, WIFI, 3G, 4G, 5G, etc.
Element A vector of attribute values e = (∗1, ∗, ∗, ∗, ∗) (∗, Type1, ∗, ∗, ∗), (3G, Type2, ∗, Telecom, ∗), etc.
1 ∗ denotes any valid value regarding a certain dimensional attribute.

identification or locating algorithms in cloud computing,
which becomes a clear trend nowadays. Apparently, a valid
clue should contain valuable information about the right
direction to explore the root cause of anomaly without
misleading information.

3.2 Background
Meituan is one of the largest on-line services providers

worldwide. Through DP system, Meituan provides various
on-line services to tens of millions of users simultaneously.
To guarantee the healthiness of the DP system, engineers
developed and adopted CAT, an APM system to monitor
the status of all the services. Or rather, to monitor more
than ten thousands of services after a major technological
transformation to microservices architecture. One of the
key tasks regarding service monitoring is to dig out the
clues leading to the corresponding root causes of certain
anomalies pertinent to various business Key Performance
Indicators (KPIs) from massive volume of tracing data. Our
research in the first stage results in a method (ImpAPTr [1])
to identify a single clue pertinent to anomalies with more
than 0.05% DSR∆ within seconds. Nevertheless, ImpAPTr
encountered several problems in field application. For ex-
ample, it cannot cope with a DSR∆ constituted by multi-
ple trivial anomalies even the DSR∆ is much larger than
0.05% but each anomaly causes a DSR∆ less than 0.05%.
Moreover, a predefined threshold (i.e. 0.05% DSR∆) is hard
to be determined and adapted to various on-line services.
Therefore, we extensively carry out this study to identify the
clues associated with those persistent anomalies without the
predefined threshold.

TABLE 4: Dimensional attributes and their valid values

Dimensional
Attributes Notation Legal Values

Network1 N Unknown, WIFI, 2G, 3G, 4G
Connect-Type*2 C Type0, Type1,. . . , Type7, Type8

Platform3 P Unknown, Android, IOS
ISP4 I CMCC, Telecom, T-Mobile, Other, etc.
City5 Y Shanghai, Beijing, etc.

App-source S App1, App2, App3, App4, etc.
App-version V 1.0.0, 10.0.2, 10.1.2 etc.

* e.g., https, http persistent connection and some self-defined types. For
ease of description, we use Type0, Type1, etc. here.

1,2,3,4,5 These are the 5 dimensional attributes used most by the opera-
tions staff in Meituan.

3.3 Problem description
TABLE 3 first defines some key concepts and terminolo-

gies used in this study, in which Dimensional Attributes
can be taken as the categories of information contained in
a service call which will be captured and recorded by APM
systems. In practice, there are usually seven dimensional
attributes being adopted in the APM system in Meituan at

TABLE 5: Examples of the request information organized
as the top 4 dimensional attributes.

Timestamp (Network, Connect-Type, Platform, ISP, City) Code
06:00 (4G, Type2, Android, Mobile, SH#) 200*

06:00 (4G, Type2, IOS, Unicom, JS#) 100
06:00 (WIFI, Type1, IOS, Telecom, SH) 101
. . . . . . . . .

06:05 (4G, Type2, Android, Mobile, SH) 200
06:05 (WIFI, Type1, IOS, Telecom, JS) 102
06:05 (WIFI, Type2, Android, Telecom, JS) 200
. . . . . . . . .

* 200, the code for a successful service call, otherwise, failed.
# Both “SH” and “JS” are the region names.

present. TABLE 4 presents the seven dimensional attributes
and their corresponding options which are extracted from
the APM system (i.e. CAT system). Among these dimen-
sional attributes, the first five in TABLE 4 are the most
investigated dimensional attributes by the operations staff
in Meituan if a DSR∆ occurs, meaning that they will check
these 5 attributes and all their pairs. Quite often, these time-
consuming investigations achieved nothing since the valid
clue may be buried in a huge number of possible pairs.
In this study, we also use these 5 attributes for evaluation,
i.e. Network, Connect-type, Platform, ISP, and City.
Take Network for example, the possible options for this
attribute can be ‘Unknown’, ‘WIFI’, ‘2G’, ‘3G’ and ‘4G’.
Examples of the actual information regarding these five
dimensional attributes are presented in TABLE 5. As shown
in TABLE 5, for each request, other than the values for
these attributes, the timestamp and status code (to indicate
a successful call or a failed call) are also recorded. As
discussed above, DSR∆ and SRSC require key information
such as the status of service call and the number of service
calls for each status. We define several key metrics and one
operation as the following.

3.3.1 Fundamental metrics
Combination of dimensional attributes (S ) defines the

set of dimensional attributes that as a combination (a.k.a.
clue) may lead to the root cause of an anomaly of a running
service. We set up S as an element e, as follows.

e = (n, c, p, i, y),

(n ∈ N or n = ∗), (c ∈ C or c = ∗), (p ∈ P or p = ∗),
(i ∈ I or i = ∗), (y ∈ Y or y = ∗)

N = {N0, N1, . . . , N4}, C = {C0, . . . , C8}, P = {P0, P1, P2},
(1)

I = {I0, I1, . . . , I7}, Y = {Y0, Y1, . . . , Y309} (2)

where the wildcard ‘∗’ can free one or more constraints
derived from certain dimensional attributes (as presented
in TABLE 4). Apparently, e can be taken as an instance of
S . As discussed above, we only involve five dimensional
attributes, i.e. N , C , P , I and Y . In Meituan, 5 options for
N , 9 options for C , 3 options for P , 8 options for I , and 310
options for Y , respectively.
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(a) (b)

Fig. 2: All elements formed with 5 dimensional attributes. (a) The element tree. (b) A complete extending process from root
node.

To support ImpAPTr+, we reuse the same metrics defined
in [1]. In short, SRSC measures the success rate of all service
calls within a time interval under the constrain of an element
e. And DSR∆ measures the degree to which the SRSC of an
element e in a certain time interval (Ti) is less than that of
its previous interval (Ti−1).

3.3.2 Operation
To support analysis, Aggregation (AGG) is still used in

ImpAPTr+, which remains the identical definition in [1]. In
general, AGG is defined as the operation to calculate the
total value of a certain metric (e.g., number of requests,
number of successful requests, etc.) within a time interval
(Ti), given a predefined e. However, to support Aggregation,
we use the dataframe tool6 instead of a high dimensional
array in our previous study [1] to save memory. Through
the dataframe tool, we can remove the limitation for the
number of dimensional attributes involved when running
ImpATPr+ at the expense of more time required to identify
clues.

3.3.3 Element tree
To explore the clues leading to a certain anomaly, we

have to take all dimensional attributes and their combina-
tions as well for further analysis. As discussed above, an
element e is used to represent one of the combinations of
dimensional attributes. Therefore, the number of elements
is thus huge, theoretically. To portray a concept, we can
construct an element tree. As shown in Fig. 2(a), with the
five dimensional attributes and their values, we obtain a 5-
layer element tree with 335 elements on the first layer, 7,973
on the second, 69,961 on the third, 258,690 on the fourth
and 334,800 on the fifth, respectively. As a result, there
may potentially be 671,759 elements need to be explored to
identify the root cause for a certain anomaly. Apparently,
seven dimensional attributes in total will create an even
huger number of elements.

6. https://pandas.pydata.org/

4 CLUE IDENTIFICATION ALGORITHM

In general, a clue associated with anomalies can be
identified with a combination of dimensional attributes (i.e.
element e) which continuously contribute to produce DSR∆

(even very small) across multiple time intervals. The chal-
lenges are twofold, i.e. the relatively huge search space of
elements and the method to quantify the impacts of different
elements. In this section, we elaborate the identification
algorithm and the rationale behind.

4.1 Quantifying impacts

We still keep Impact Factor and Diversity Factor used in [1]
to measure the impacts of an element e towards a DSR∆.
Besides, a new index, namely Ranking Score is applied in the
new method. In short, Impact Factor (IF) measures the degree
to which a particular element (e.g., e0) impacts the SRSC
within a time interval, while Diversity Factor (DF) measures
the degree of change to the SRSC between two adjacent time
intervals using the relative entropy calculated by the Jensen-
Shannon (JS) divergence [57].

As discussed above, an element owning relatively
smaller IF and larger DF holds larger possibility to be an
effective clue. So we designed the Ranking Score (RS) to
measure the combination impact derived from both the
two metrics. The first step is to normalize the two metrics
using MIN MAX method, and transform them to [0, 1].
We need to select the element with smaller IF and larger
DF, so the normalized IF(nIF) is “1− MIN MAX(IF(e))” and
the normalized DF(nDF) is “MIN MAX(DF(e))”. Then the
Ranking Score can be calculated using the Euclidean Distance
as Equation 3.

RS(e) = 2
√

(nIF )2 + (nDF )2 (3)

To identify clues pertinent to anomalies is to find the
elements shown in continuous time intervals which are
related to failed requests. Therefore, we defined Weighted
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Ranking Score (WRS) to reflect the historical effect for a
certain clue. The rationale behind is that the more often a
clue occurred in the near historical time intervals, the higher
WRS. The equation is thus defined as follows.

WRS(e) = RS(e) ∗ (1 +
p

total
) (4)

where p and total respectively represent the occurrences of
e and the total number of occurrences within the near past
time window (i.e. certain number of time intervals).

4.2 Reducing search space
As discussed above, the search space can be rather huge

to be dealt with in a timely manner. Therefore, we need
to reduce the search space. Several strategies are listed as
follows.

Redundant Elements: Since e is a combination of
dimensional attributes, the order of the attribute values
does not matter. Therefore, as Fig. 2(a) depicts, two nodes
(i.e. (T309, N0) and (N0, T309)) in the two red cycles on
the second layer can be categorized as redundant nodes
(elements). Obviously, only one of the nodes and its sub-
trees need to be reserved.

Positive Impacts: According to the discussion above,
the Impact Factor represents the impact of an element on the
overall DSR∆. While there might be a positive Impact Factor
for a given element e, which means that this element e is
related to the decrease of a DSR∆. Since we are seeking
elements related to the increase of a DSR∆, we can also
remove the elements with positive Impact Factor and their
subtrees as well from the element tree.

Algorithm 1 The Main Procedure
Input:
1: The overall failed service calls in previous and latter intervals (t0, t1),

Fn(∗, t0), Pn(∗, t1);
2: The overall service calls in previous and latter intervals (t0, t1), Rn(∗, t0),

Rn(∗, t1);
3: The dataframe (df ) of service calls within the two intervals (t0, t1), df(t0),

df(t1);
Output:
4: Clues Set, ClueSet;
5: function MAIN( )
6: rootNode← new Node() //Create the root node.
7: CREATECHILDREN(rootNode, Fn(∗, t0), Fn(∗, t1), Rn(∗, t0),

Rn(∗, t1), df(t0), df(t1)) // Algorithm 2, init the first layer.
8: ResultNodes← []
9: BFSLAYERS(rootNode.children, rootNode,ResultNodes, Fn(∗, t0),

Fn(∗, t1), Rn(∗, t0), Rn(∗, t1), df(t0), df(t1)) // Algorithm 2
10: // Calculate the WRS value of each node.
11: sort(ResultNodes, key = WRS, type = ascending)
12: ClueSet← ResultNodes.top(N)
13: return ClueSet
14: end function

4.3 Overall algorithm
Overall, the major difference from ImpAPTr [1] exists in

Algorithm 1, which is a breadth-first traversal algorithm on
an element tree. Two major steps (i.e. Line 7 and Line 9) are
detailed in Algorithm 2 and Algorithm 3, respectively. As
shown in Algorithm 2, a new child node is created by mod-
ifying one of the ∗ (if exists) of the current element to a legal
dimensional attribute value (step “GenerateNewElements”,
line 3 in Algorithm 2). Fig. 2(b) provides an example to
generate child nodes from the root node. Then we applied a
breadth-first traversal algorithm to fetch candidate elements

Algorithm 2 Grow Child Nodes
1: function CREATECHILDREN(currentNode, Fn(∗, t0), Fn(∗, t1), Rn(∗, t0),

Rn(∗, t1), df(t0), df(t1))
2: elements← []
3: elements← GenerateNewElements
4: for each e ∈ elements do
5: node← new Node()
6: Fn(e, t0)← AGG(df(t0), e)
7: Rn(e, t0)← AGG(df(t0), e)
8: Fn(e, t1)← AGG(df(t1), e)
9: Rn(e, t1)← AGG(df(t1), e)

10: SRSC(e, t0), SRSC(∗, t0), SRSC(¬e, t0)← // Equation 3
11: SRSC(e, t1), SRSC(∗, t1), SRSC(¬e, t1)← // Equation 3
12: IF (e)← SRSC(∗, t1)− SRSC(¬e, t1)
13: Df(e)← //Equation10
14: // Set the values of the node.
15: currentNode.children.add(node)
16: node.parent← currentNode
17: if IF (e) >= 0 then
18: node.pruned← TRUE
19: end if
20: end for
21: end function

Algorithm 3 Breadth-first Traversal
1: function BFSLAYERS(layerNodes, currentNode,ResultNodes, Fn(∗, t0),

Fn(∗, t1), Rn(∗, t0), Rn(∗, t1), df(t0), df(t1))
2: // Delete the redundant nodes.
3: nextLayer ← []
4: for each node ∈ layerNodes do
5: if node.pruned != TRUE then
6: CREATECHILDREN(node, Fn(∗, t0), Fn(∗, t1), Rn(∗, t0),

Rn(∗, t1), Ndarray(t0) , Ndarray(t1))
7: end if
8: if node is the rightmost then
9: for each nod ∈ layerNodes do

10: if nod.impactFactor < 0 then
11: ResultNodes.append(nod)
12: end if
13: end for
14: end if
15: nextLayer.append(node.children)
16: end for
17: BFSLAYERS(nextLayer, currentNode,ResultNodes, Fn(∗, t0),

Fn(∗, t1), Rn(∗, t0), Rn(∗, t1), df(t0), df(t1))
18: end function

which might be potential clues according to their Ranking
Score (RS). The generation of the element tree is along with
the traversal with the strategies discussed in Section 4.2 to
limit the size of the final element tree. Finally, as shown in
Algorithm 1, we sort all the nodes by WRS ascendingly and
generate the top N possible clues.

5 EVALUATION

In this section, we elaborate the evaluation on the per-
formance of ImpAPTr+ to identify the valid clues associated
with anomalies regarding the effectiveness and efficiency.
The former mainly focuses on whether a valid clue can be
identified and the accuracy. The latter focuses on the effi-
ciency of the identification process, meaning the time cost
to run the algorithm and identify a valid clue. Two different
evaluations with different datasets and research purposes
are then designed and executed. In general, the evaluation
is to identify proper elements/clues which lead to the root
causes contributing to service anomalies regarding DSR∆

in a timely manner. To complete the evaluation, we first
retrieve the raw data from the production environment and
then run ImpAPTr+. Based on the resulted data, we perform
confirmation and analysis to understand the performance of
ImpAPTr+ regarding effectiveness and efficiency. With this

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3181143

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nanjing University. Downloaded on June 13,2022 at 12:13:08 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. X, SEPT 2021 8

fundamental understanding, we then design and implement
a more thorough evaluation on ImpAPTr+ using a fabricated
dataset and compare the results with the other two methods,
i.e. R-Adtributor and Squeeze.

To address the research objective, we establish two re-
search questions for evaluation as follows.

RQ1. Is ImpAPTr+ able to identify the valid clues (elements)
of service anomalies regarding DSR∆ at what accuracy
leve? In order to locate the valid clue, as the main
objective of our research, we intend to test whether
and to what degree this objective can be satisfied.

RQ2. How long will it take to locate the valid clues of service
anomalies regarding DSR∆? Timeliness is also crucial
if we intend to apply ImpAPTr+ in production en-
vironment. Therefore, RQ2 is to explore the time
needed to identify useful clues through ImpAPTr+.

5.1 Evaluation with production dataset
With the raised RQs, our first evaluation is conducted

with the dataset from the real production environment.

5.1.1 Research process
As shown in the upper lane of Fig. 3, the research process

consists of three major steps.
1) One researcher (Researcher A) retrieved monitoring data

from the production environment to prepare the dataset
for evaluation.

2) Another researcher (Researcher B) ran ImpAPTr+ on the
dataset created from the first step.

3) We analyzed the resulted clues by working with the
experienced operations engineers in Meituan. By dig-
ging out potential root causes through the clues we
obtained from the second step, we attempted to confirm
the effectiveness of ImpAPTr+.

5.1.2 Dataset preparation
Dataset A involves real cases from the production en-

vironment. The first week of production environment data
from March 1st, 2020 has been retrieved through the CAT
tool. Without any preference, we feed ImpAPTr+ with the
data from a serial of time intervals where SRSC is relatively
high and changes gently since the major issue ImpAPTr+
targeting is actually trivial anomalies. Otherwise, the previ-
ous ImpAPTr is capable enough to find the correct clues [1].
Meanwhile, to fully evaluate our method, we include all
the seven dimensional attributes in dataset A. Therefore,
one example record with JSON format is {Network: 4G,
Connect-type: Type1, Platform: android, ISP: CMCC,
City: SH, App-source: APP1, App-version: 10.1.0,
Code: 200}.

5.1.3 Execution
The experiments involved in this evaluation were run

on a virtual server, which configured as Linux OS with Intel
Core Processor (Skylake) @ 2095.074 MHz and 16GB Mem-
ory. The runtime is Python-3.8 development environment.
As shown in Fig. 3, Researcher A prepared the dataset with
separate JSON files, then Researcher B ran ImpAPTr+ to figure
out the clues. As the last step, researchers worked with the

front-line operations staff to study the clues and try to dig
out the root causes. However, this is a time-consuming task.
We discussed a dozen cases, some of which are listed in
TABLE 6.

5.1.4 Result analysis

As mentioned before, the actual production environment
data contains all the seven dimensional attributes, some
of which contains thousands of valid values. As TABLE 6
presents, all the three cases show very high SRSC during
the time periods which are considered ‘healthy’ status nor-
mally. Although there are considerable number of failed
requests in these three cases, anomaly detection or root
cause location methods will not be applied in most cases.
However, ImpAPTr+ managed to identify useful clues based
on the quite ‘healthy’ data. The time to run ImpAPTr+ for
the three cases are 18.027, 43.2306, and 22.9687 seconds,
respectively. The root causes or deeper clues for some of
the clues have also been dug out. Take the software errors
for example, which involves case 1 and case 3. The SV1
is an issue about certain special characters in the requests
from Android devices being parsed as wrong-format data
and further incurring failed response. Meanwhile, the SV2
is an issue regarding multithreaded concurrency. With rel-
atively high QPS (Queries Per Second), a recently updated
component (through connection Type8) does not set lock
control between threads, causing occasional deadlocks for
some threads. Interestingly, the top 2 clues in case 3 are
pointing to one same root cause, which is not rare in the
clues generated by ImpAPTr+.

In general, ImpAPTr+ has successfully located the valid
clues leading to the root causes of the service anomalies,
which to a certain degree confirms the effectiveness of the
improved method (RQ1). Meanwhile, the time for locating
is normally less than one minute for time period less than
one hour, which is timely and efficient (RQ2).

5.2 Evaluation with simulated dataset

The evaluation with the simulated dataset intents to por-
tray the performance of ImpAPTr+ extensively. To achieve
this goal, we planted known anomalies to increase the
anomaly density.

5.2.1 Research process

As shown in the lower lane of Fig. 3, the research process
of the evaluation on the simulated dataset also consists
of three major steps, except the first step is more compli-
cated than the evaluation with real production environment
dataset.

1) Researcher A prepared the simulated dataset based on
the monitoring data from the production environment
(cf. Section 5.2.2 for detail).

2) Researcher B ran ImpAPTr+ on the dataset created from
the first step.

3) we analyzed the resulted clues to evaluate the per-
formance of ImpAPTr+ in terms of effectiveness and
efficiency.
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TABLE 6: Identification results from production environment dataset

Date 3.2 Time period 20:00∼20:40
Time interval T1 T2 T3 T4 T5 T6

Clue Identified in 18.0273s Confirmation Results#Records 1485880 1492475 1504285 1476165 1434970 1434559
SRSC 99.779% 99.773% 99.774% 99.767% 99.768% 99.756%
#Failed requests NA a NAa 358 377 360 382 1st Clue (Type0, Shanghai) CSDc

#Failed requests 204 298 291 330 332 333 2nd Clue (Type0, Android, SH) SV1d

#Failed requests NAa 1187 1191 1186 1199 1250 3rd Clue (WIFI, Type0, Android) NAb

Date 3.3 Time period 12:15∼13:15
Time interval T1 T2 T3 T4 T5 T6

Clue Identified in 43.2306s Confirmation Results#Records 2018526 1957376 1927742 1880492 1840619 1797344
SRSC 99.795% 99.784% 99.772% 99.771% 99.761% 99.754%
#Failed requests NAa 326 443 473 372 479 1st Clue (IOS, ISP:other) JSCe

#Failed requests NAa 310 514 556 367 509 2nd Clue (ISP:other, Guangdong) NAb

#Failed requests NAa NA a NAa 247 394 162 3rd Clue (Unicom, Shanxi) NAb

Date 3.4 Time period 12:00∼12:40
Time interval T1 T2 T3 T4 T5 T6

Clue Identified in 22.9687s Confirmation Results#Records 2529157 2430195 2372317 2236694 2150281 2039741
SRSC 99.812% 99.801% 99.800% 99.791% 99.784% 99.776%
#Failed requests NAa 430 339 484 413 409 1st Clue (WIFI, Type8) SV2f

#Failed requests NAa NA 399 481 413 408 2nd Clue (WIFI, Type8, IOS) SV2g

#Failed requests NAa NAa NAa 258 259 256 3rd Clue (Type0, Android, Telecom) NAb

a No record has been identified to be related to the clue at the same line.
b No root cause or valuable information about the root cause has been dug out through the clue at the same line.
c,e ISP errors, however, due to privacy policy, we omit the details.
d,f,g Software errors, see Section 5.1.4 for the detail.

Fig. 3: The process of the research

5.2.2 Dataset preparation

The results in the previous evaluation have revealed that
to locate a clue pertinent to one anomaly, the number of
continuous time intervals is normally less than 6 (a.k.a.
30 minutes). Meanwhile, no evidence has been observed
to imply obvious regularities of the occurrence of failed
service requests across continuous time intervals. With these
observations, together with the recommendation suggested
in [58] on minimal criterion on the number of random tests,
we simulated more than 3000 sets of data (each contains
30-minute information on service requests) to perform the
evaluation. However, to construct a simulation dataset is
not easy, which needs subtly design. We took several steps
to construct the simulation dataset as follows.

0 5

TI1

10 Time15 20 25 30

TI2 TI3 TI4 TI5 TI6

a time box (30 minutes)

Fig. 4: A time box of 30 minutes with 6 intervals

Step 1: Base dataset retrieval. The base dataset is from the
real production environment in Meituan. The APM
system stored the monitoring data in a database,
from which we retrieved the monitoring data of the
DP system from January 1st to January 31st, 2020.
To be specific, we retrieved the service calls to a hot
service named “shop”. For each day, there are around
20 to 70 million service calls to this service, spreading
over 288 time intervals. We selected the data from
10:00∼20:00, resulting 120 time intervals each day.
The result is presented in TABLE 7. Take January
1st as an example, we have 120 time intervals, and
the range of the number of requests for each time
interval is also listed, i.e. 385971 on average and the
25% and 75% region ranges from 358566 to 436524.

Step 2: Time box selection. A time box contains 30 min-
utes which is formed by 6 continuous time inter-
vals, as shown in Fig. 4. Without any preference,
one researcher constructed the time boxes from
10:00∼20:00 each day. The basic idea is to use the
first 30 minutes (10:00∼10:30) as the first time box,
and then using 5 minutes (one time interval) as a
time window, pan to the right to generate the rest
time boxes. As a result, there are 115 time boxes
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TABLE 7: Daily experimental data in January, 2020.

Date 1 2 3 4 5 6 7 8 9 10
(25%).Requests 358566 230472 246805 313465 277496 211669 223854 226433 234644 250803
Avg.Requests 385971 257245 284617 346418 298673 237122 251089 256707 265137 290421

(75%).Requests 436524 283778 326333 375109 319594 265420 277766 286264 295176 329153
Date 11 12 13 14 15 16 17 18 19 20

(25%).Requests 320829 302917 238110 248434 250162 250294 258066 317481 282424 262486
Avg.Requests 353301 328140 266781 279017 281766 282945 299844 345413 315582 298319

(75%).Requests 379275 359309 297257 308226 312215 313221 337928 371306 341800 324290
Date 21 22 23 24 25 26 27 28 29 30 31

(25%).Requests 231468 200177 149416 82124 90211 80317 78230 75513 69826 65728 60893
Avg.Requests 261975 220911 157788 89561 95638 84992 83399 79699 73639 69884 64487

(75%).Requests 289390 238725 171266 96196 103091 91632 88755 86055 79292 74824 69363

* The number in this table is slightly different from our previous study [1] due to different time scopes.

daily, which were stored into a list Lt for further
simulation.

Step 3: Anomaly simulation. To simulate an anomaly, we
need to simulate a combination of dimensional at-
tributes (e) and a DSR∆ caused by e at the same
time. Randomness is essential to simulate both e and
DSR∆ .

Step 3.1: Element e simulation. To simulate a combination of
dimensional attributes (e), we first construct an el-
ement tree (as shown in Fig. 2(a)) based on the
time box determined in the previous step. In order
to mimic seemly ‘healthy’ status, from the root we
calculate Rn(ei, T ) (i.e. the total number of requests
within time interval T under the element ei) for each
node (element ei) to find all the ei with its Rn(ei, T )
ranging from 0.01% to 0.03% of the number of all
the service calls within a certain time interval for all
the 6 time intervals contained in the time box. These
elements were stored in a candidate list Le and from
this list, we randomly selected one as the simulated
element, which was used to plant anomalies in all
the 6 time intervals.

Step 3.2: DSR degree simulation. In general, a DSR∆ anomaly
in this study is designed as the SRSC dropping less
than 0.05% in any two adjacent time intervals within
the time box. Since we did not intend to change the
base dataset too much, we randomly set the range
for DSR∆ from 0.01% to 0.03% for each time interval
in the selected time box.

Step 4: Anomaly planting. To plant an anomaly in any time
interval as discussed in the above steps, we need to
simultaneously consider two adjacent time intervals,
including the nearest time interval (i.e. T0 in Fig. 4).
An object DSR0 is randomly selected from 0.01% to
0.03% (Step 3.2). For a given e, the upper limit of
the number of successful requests which need to be
changed from successful requests to failed requests
is thus determined by Equation 5 to create the DSR0,
meaning that a less than DSR0 anomaly may happen
if there are not enough successful service requests.
Unlike [1], we do not need to reselect a new element.
Therefore, the last step of anomaly planting is to
randomly select these service calls constrained by e
and change its status from “successful request” to
“failed request”.

Rn(T2) ∗ (SRSC(T2)− SRSC(T1) + DSR0) (5)

where T1 and T2 denote two adjacent time intervals
in a time box, Rn(Ti) represents the number of
requests within time interval Ti.

5.2.3 Execution
We used the same configuration described in Sec-

tion 5.1.3 to run ImpAPTr+ on the simulated dataset. Due to
limited memory, we stored the simulated data in separated
JSON files. To be specific, as described in Section 5.2.2, we
selected all suitable time boxes according to Step 2, then
for each time box, one researcher tried 115 times (as a
balance between the number of random simulations and
computation resources) to simulate e (Step 3.1) and plant an
anomaly (Step 4) and stored into separated JSON files. As a
result, we have 3565 files, corresponding to 3565 time boxes
with various planted anomalies. We then transferred all the
JSON files to another researcher who ran ImpAPTr+ and try
to locate the valid clues pertinent to the planted anomalies.

5.2.4 Result analysis
To answer the RQs raised in Section 5, we need to

analyze the resulted data from various aspects.
A. Accuracy: Apparently, the first and foremost cri-

terion to evaluate the performance of ImpAPTr+ should be
the accuracy of locating the valid clues pertinent to the
planted anomalies. Therefore, we define the accuracy as
the percentage of successfully identified valid clues in 3565
time boxes, i.e. accuracy = SI/3565 where SI denotes the
number of successful locating to valid clues. However, the
preliminary trials imply that it was normally impossible
to locate the exact one, we then loosened the criterion of
SI to the top 3, 5 and 10 candidate clues. Take top 3 for
example, if the actual e exists in the top 3 clues after running
ImpAPTr+, then we deem it a successful locating, otherwise
a failed one. Top 5 and 10 apply similar rules to determine
SI. Fig. 5 depicts the clue identification accuracy for the three
methods. Apparently, ImpAPTr+ outperforms the other two
methods in all the three different criteria (i.e. top 3, 5 and
10) of accuracy. Take top 3 as an example, the accuracy of
ImpAPTr+ is 81.43%, indicating that out of 3565 simulations,
ImpAPTr+ can locate the correct clues 2902 times.

B. Efficiency: Due to the difficulty to identify clues
associated with trivial anomalies as designed in the fab-
ricated dataset, none of the three methods can correctly
identify a clue all the time, we evaluated the efficiency of
the three methods from three different aspects. The first is
about the time required to analyze the monitoring data from
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Fig. 5: Top 3, 5 and 10 accuracy for three methods

one time interval (5 minutes). The second aspect is thus
the time required to identify a clue correctly. The third is
the capability to identify a clue correctly within fewer time
intervals.

Fig. 6: Time required to analyze data for one time interval by
three methods (in seconds)

TABLE 8: Time on processing data for one time interval per
method

ImpAPTr+ R-Adtributor Squeeze
Max 4.26 2.66 55.58
75% quartile 3.4 1.76 29.59
Avg 3.12 1.5 20.89
25% quartile 2.83 1.17 12.25
Min 1.79 0.98 4.73

B.1 Time to analyze the data from one time interval:
As shown in Fig. 6 and TABLE 8, the three methods perform
differently in terms of the time required to analyze the
monitoring data coming from one time interval. R-Adtributor
performs the best, which is able to complete the analysis
from 0.98∼2.66 seconds, on average 1.5 seconds. ImpAPTr+
requires a comparable period of time to complete the similar
analysis, ranging from 1.79 seconds to 4.26 seconds, on
average 3.12 seconds. While both the methods can perform
the analysis in a matter of a few seconds, Squeeze may need
tens of seconds to perform the similar analysis. Another

Fig. 7: Correlation between the time required to analyze the
data from one time interval and the number of requests con-
tained in the time interval, using ImpAPTr+

interesting finding is that the time required to perform
analysis seems not related to the number of requests within
a certain time interval. The correlation coefficient r between
these two equals 0.3258, as shown in Fig. 7, which implies
that the time required to analyze data from one time interval
by ImpAPTr+ depends on other factors. Nevertheless, given
the characteristics presented in Fig. 7, time intervals with
more service calls tend to cost less time on the analysis.

Fig. 8: Time required to identify a correct clue within top 3, 5
and 10 candidates for three methods

TABLE 9: The time to identify a correct clue within top 3, 5 and
10 candidates for three methods (in seconds)

ImpAPTr+ R-Adtributor Squeeze
Max (top 3/5/10) 19.96/19.63/19.42 11.26/11.08/9.99 179.1/178.7/178.2
75% quartile
(top 3/5/10) 10.06/9.9/9.81 5.76/5.57/5.06 93.7/93.62/93.62

Avg (top 3/5/10) 7.47/7.37/7.3 4.08/3.88/3.57 65.66/65.93/65.87
25% quartile
(top 3/5/10) 3.46/3.41/3.4 2.09/1.89/1.77 36.76/36.9/37.23

Min (top 3/5/10) 1.97/1.97/1.97 1.03/1.01/1.01 9.98/9.98/9/98

B.2 Time to identify a clue correctly: The identifica-
tion of a clue requires analysis across several time intervals
by all the three methods. Fig. 8 and TABLE 9 present
the time required to identify a correct clue using different
methods with different criteria. Take the top 3 identification
for example, apparently, R-Adtributor requires the least time
to perform the clue identification, which ranges from 1.03 to
11.26 seconds, on average 4.08 seconds. ImpAPTr+ requires a
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little bit extra time to find a correct clue, which ranges from
1.97 to 19.96 seconds, on average 4.08 seconds. However,
the time required to perform the similar identification by
Squeeze varies from a few seconds to nearly 180 seconds,
significantly much longer than that for its two competitors.
In general, R-Adtributor and ImpAPTr+ require comparable
time, which is in a matter of several seconds to identify a
clue correctly. Nevertheless, Squeeze requires almost 10 times
longer to perform similar analysis.

Fig. 9: Winning rate to identify a correct clue using the least
time intervals

B.3 Timing to identify a clue correctly: As shown in
Fig. 4, a time box contains 6 time intervals. Basically, all
the three methods need multiple time intervals to identify
a correct clue. Apparently, the fewer time intervals needed
the more feasible to deploy the method to perform a near
real-time clue identification. To compare the performance
of a certain method in terms of timing, we measured how
many times that it took the fewest time intervals to locate a
correct clue. The results are presented in Fig. 9. Apparently,
ImpAPTr+ performs the best among all the methods with all
the top N criteria. Take top 3 as an example, the winning
rate (i.e. the percentage of the times that one method used
the smallest number of time intervals to identify a valid clue
correctly) of ImpAPTr+ is 71.81%, meaning that ImpAPTr+
uses the fewest time intervals in 2560 out of 3565 time
boxes to identify a clue correctly. One noteworthy point
is that different methods may identify a correct clue in an
exactly same time interval. In this case, both the methods
are equally the winners regarding the timing. An interesting
phenomenon, as shown in Fig. 9, is that with the looser
criteria to determine a correct identification (i.e. top 3, 5
and 10), the winning rate of ImpAPTr+ decreases, whilst
the winning rate of the other two methods increase. This
phenomenon is because looser criteria helps to include more
candidate clues, which may imply that ImpAPTr+ is more
likely to locate a clue precisely.

In general, ImpAPTr+ performs the best in terms of
accuracy. In most cases, we can expect an accuracy over
80% (RQ1), much higher than the other two methods.
Meanwhile, although ImpAPTr+ is not the fastest method
to identify a correct clue, it only needs a matter of seconds
to find a proper clue (RQ2). Last but not least, in most
cases, ImpAPTr+ requires the fewest time intervals to locate
a correct clue, which shows the potential to support a near
real-time monitoring and clue locating to on-line services.

5.3 Threats to validity

We discuss several concerns related to the threats to
validity of this evaluation.

Dataset: To evaluate ImpAPTr+ and explore its per-
formance, we simulated anomalies and randomly inserted
them into the raw dataset retrieved from the real produc-
tion environment. In this way, we increased the density
of anomalies so that a relatively comprehensive evaluation
would not take weeks or even months, imaging the huge
effort to confirm anomalies in the real production envi-
ronment. However, the actual anomalies and the related
service calls may take a different way to take place in the
production environment. To mitigate this issue, we applied
random strategy in both clue formation and service request
selection. Besides, with reference to the suggestion raised
in [58], 3565 times of random tests were adopted in our
study to evaluate the performance of ImpAPTr+. Moreover,
two researchers independently prepared the dataset and
evaluated ImpAPTr+. In this sense, this threat to validity
could be mitigated to a fair degree.

No severe DSR in evaluation using dataset A: This
study is motivated to free the constraint derived from
a predefined threshold on DSR∆. To mimic a seemingly
‘healthy’ status, we did not involve severe DSR∆ in the
evaluation using the dataset from production environment
(i.e. dataset A). However, the algorithm behind ImpAPTr+
does not rely on any degree of DSR∆ , which implies that
if ImpAPTr+ can cope with trivial anomalies, it should be
able to cope with severe DSR∆s accordingly. Besides, the
simulated dataset B covers continuous time boxes that
contains dozens of severe DSR∆s. The evaluation on the
simulated dataset also confirms that ImpAPTr+ is able to
work with severe DSR∆s.

Confirmation clues in dataset A evaluation: The
evaluation on production environment dataset A generates
several potential clues, for some of which researchers were
not able to confirm the corresponding root causes. However,
it might not be sufficient to justify invalid clues since the
complexity of the service systems and relative high cost on
mining the root causes. In this sense, the data characteristics
(e.g., 30 minutes as the time box and no obvious regularity
on the occurrence of the failed records, etc.) applied in
the simulation may not be able to reflect all the situations,
which raises the necessity for further investigation.

Combination of anomalies: In the simulated dataset,
we did not compose combinations of anomalies to test
ImpAPTr+, though the original motivation of this study is to
address this issue existing in ImpAPTr [1]. On the one hand,
the algorithm behind ImpAPTr+ does not rely on any degree
of DSR∆ , which implies that ImpAPTr+ treats anomalies one
by one. In this sense, the concept of anomaly combination
does not need to be considered when running ImpAPTr+.
The identification results presented in TABLE 6 also imply
that ImpAPTr+ is able to find different clues pertinent to
different root causes (a.k.a. combination of anomalies). On
the other hand, before planting anomalies, the data in the
original base time box has already contained various failed
requests derived from different anomalies. Therefore, there
are anomaly combinations existing in the simulated dataset.
Based on the results in Section 5.2.4, obviously, ImpAPTr+
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can work with anomaly combinations.
Distribution of failed requests in one time box: Since

no obvious patterns have been observed, we randomly set
the number of requests which need to be changed from
successful requests to failed ones across the six time in-
tervals in one time box to mimic one anomaly. However,
the anomalies in real-world may take certain patterns or
distributions to occur and to impact the status of service
requests. Nevertheless, all the three methods evaluated in
this study do not rely on such patterns to identify anomalies.
Meanwhile, the 3565 random tests may also mitigate this
validity risk.

Time interval: SRSC and other critical metrics elabo-
rated in Section 3.3.1 are calculated on a basis of 5-minute
interval in this study. Apparently, SRSC is dynamic and un-
certain with different start point or length of time interval.
In this sense, more research should be carried out to explore
a suitable way to set a reasonable interval regarding both
the start point and length.

The dynamic service behavior and environment:
The time box applied in current ImpAPTr+ is six time
intervals (i.e. 30 minutes), which also implies that the
service and the environment should keep relatively
comparable in the time box. However, with highly variable
and non-stationary operating conditions, ImpAPTr+ may
not achieve correct clues leading to valid anomalies. In
practice, operations staff can determine a proper timing to
run ImpAPTr+.

The APM system: This study has been conducted
using one of the popular APM systems we listed in Section 1
for data collection, which may limit its external validity.
However, we only focused on data analysis in this study.
As long as the data such as the number of requests, the
successful rate of service calls, the multiple dimensional
attributes are available in most APM systems, ImpAPTr+ is
able to work with different APM systems.

Multiple clues existing simultaneously: In practice,
there may exist multiple valid clues simultaneously. Im-
pAPTr+ cannot handle this situation directly by locating all
these clues at the same time. However, ImpAPTr+ identi-
fies the most important clue to an anomaly according to
Weighted Ranking Score. Therefore, if the root causes for other
valid clues keep impacting the SRSC to a certain service, it
is possible that these clues could be located if their Weighted
Ranking Score increases.

6 DISCUSSION

For many popular on-line software services, although
the frequency of severe DSR∆ might not be very high, slight
DSR∆s might occur continuously, which may also lead to
severe consequences if the service is used by a large number
of users and if the root causes of these slight DSR∆s are not
addressed in time. Meanwhile, the proliferation of DevOps
and microservices architecture naturally encourage service
autonomy and distributed deployment and operations. As
a result, instead of single dimensional attribution being per-
tinent to an anomaly, there usually exists a combination of
multiple dimensional attributions relating to one anomaly.
Moreover, a severe DSR∆ being caused by several trivial
anomalies is also not rare in practice. Such situation makes

service monitoring even more difficult to be conducted in
a timely manner. We proposed ImpAPTr+ to identify the
valid clues indicating the root causes of service anomalies,
which normally consist of multiple dimensional attributes.
We discuss several considerations in this section.

Balancing is important: In general, service monitor-
ing and clue identification inevitably consume computation
resources, e.g., the overhead of service monitoring and CPU,
memory resources, etc. Therefore, it is critical to maintain
a balance between the cost of service monitoring and the
benefit derived from monitoring. To be specific, ImpAPTr+
is able to cope with a trivial anomaly pertinent to a DSR∆

far less than 0.05%. If the total number of users is not
very large during off-peak periods or the DSR∆ is very
small, it might not be economic to run ImpAPTr+, given
the fact that the algorithm is not sensitive to the number
of requests. Another example is the top 3, 5 and 10 possible
clues we listed in ImpAPTr+. The balance is between the
usable clues and the accuracy of the identification algorithm.
In most cases, it does not make sense to list top 10 clues to
improve accuracy. In general, factors such as the business
scenario, the expectation from the relevant stakeholders and
data characteristics should be considered when choosing the
balancing strategy.

Timing to run ImpAPTr+: For services with massive
users, ImpAPTr+ can be used to diagnose potential root
causes after severe anomaly occurs (e.g., more than 0.05%
on DSR∆) or other perceptible events pertinent to service
failures since the algorithm behind ImpAPTr+ does not rely
on any degree of DSR∆. Nevertheless, a more promising
application scenario might be the maintenance of the health-
iness of on-line services. As Fig. 1 indicates, services with
massive users in Meituan cannot reach 100% in terms of
SRSC, which implies that there must be some anomalies at
any time. Therefore, ImpAPTr+ can be used as a precaution
mechanism for services with massive users when the peak
of requests comes. Operations staff can run ImpAPTr+ proac-
tively to find clues pertinent to anomalies before severe
consequence occurs.

The value of efficiency for ImpAPTr+: ImpAPTr+ is
not designed to handle abrupt anomalies. Instead, it is
driven by the urge to address the root causes of some trivial
anomalies and keep the on-line services a near 100% healthy
so as to further improve the user experience to the on-line
services operated by Meituan. To achieve this, an approach
to provide near real-time monitoring and anomaly clue
identification is important, which requires ImpAPTr+ to take
less time and less data (i.e. fewer time intervals) to complete
the diagnosis. In this sense, we deemed the efficiency of
ImpAPTr+ important and evaluated it from three aspects,
i.e., (1) the time to analyze the data from one time interval,
(2) the time to identify a clue correctly, and (3) the timing to
identify a clue correctly.

Scale up service monitoring and clue identification:
In this paper, we discuss DSR∆ and clues pertinent to
anomalies on a single service basis, which may encounter
challenges when scaling up the method. However, since the
service monitoring is performed by the APM system and the
ImpAPTr+ method is conducted by a separated computer,
the scale-up should not be a tough job in most cases. One

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3181143

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nanjing University. Downloaded on June 13,2022 at 12:13:08 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. X, SEPT 2021 14

possible strategy is to apply the “80–20” rule to perform
the service monitoring and deploy ImpAPTr+ on the busiest
services. Moreover, the APM system captures the traces
of all the service calls, which can be used to portray the
topology of all the services and potentially help to optimize
service monitoring and clues locating. Nevertheless, the
balance between cost and benefit should be considered prior
to deploying ImpAPTr+ to monitor more services.

Synthesis of clues: Another noteworthy point is that
to synthesize clues to identify certain patterns of anomalies
or create more valuable clues based on original clues pro-
duced by ImpAPTr+. Without the constraints from DSR∆,
ImpAPTr+ naturally creates many clues pointing to service
anomalies, then if several clues contain the same value for a
specific dimensional attribute, combing these clues may pro-
vide a more profound description about the potential root
causes. Take the results in TABLE 6 for example, although
some clues may not be able to expose root causes, the
combination of the clues in the same time period does offer
certain new insight to the status of the services. However,
it may need experience and time to do better synthesis of
clues.

7 CONCLUSION

For many on-line software systems with massive users,
the healthiness of the software systems is critical to ensure
continuous and reliable services. Therefore, it is important
to identify and address anomalies in a timely manner so as
to mitigate possible negative impacts on business. Among
many indicators related to anomalies, SRSC and DSR∆ to
certain ‘hot’ services easily draw attention from the business
and operations staff, yet the challenges also exist. One is the
complex reasons (i.e. combinations of multiple-dimensional
attributes S ) behind a DSR∆, the other is the small time slot
available to find the S , given that numerous users may be
impacted if the root cause has not been addressed quickly.
We proposed an algorithm, ImpAPTr, to tackle these chal-
lenges in [1]. However, ImpAPTr works with a predefined
threshold (i.e. 0.05% of DSR∆), which encounters several
issues in field adoption, e.g., the inability to cope with
anomaly combinations, the difficulty to determine a proper
threshold, etc. In this paper, we propose ImpAPTr+ that no
longer needs to specify the threshold on DSR∆ in advance.

At this stage, ImpAPTr+ shows great potential to
strengthen the APM system regarding service monitoring
and issue tracking. However, we also notice the complexity
of the whole on-line system and the production environ-
ment as well when we implement this approach for field
trial. To this end, we suggest two promising topics for future
work.
(1) It might be valuable to design and implement a strategy

to support a dynamic interval for ImpAPTr+, by which
the dynamic time interval could be adjusted according
to the number of users per time unit. For example,
during peak hours, the interval should be shorter so as
to save monitoring cost such as computing resources.

(2) The identification of a valid clue does not ensure that the
corresponding root cause could be successfully revealed
and addressed. While manual troubleshooting is a time-
consuming task in most cases, it may be critical to eval-

uate the value of investigating every single clue, given
that most clues may be related to trivial anomalies. For
example, prediction models could be used to estimate
the potential impacts of various anomalies in the near
future and then prioritize the clues accordingly.
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